DRAFT HAZARDOUS BUILDING MATERIALS SURVEY
& HAZARDOUS MATERIALS/WASTE ASSESSMENT
LEARNING RESOURCES CENTER
COLLEGE OF MARIN
835 COLLEGE AVENUE
KENTFIELD, CALIFORNIA

PREPARED FOR:
Marin Community College District
835 College Avenue
Kentfield, California 94904

and

Swinerton Management & Consulting Inc.
835 College Avenue
Kentfield, California 94904

PREPARED BY:
Ninyo & Moore
Geotechnical and Environmental Sciences Consultants
1956 Webster Street, Suite 400
Oakland, California 94612

November 30, 2005
Project No. 401135007
November 30, 2005
Project No. 401135007

Mr. José Nunez, Director of Modernization
Marin Community College District
835 College Avenue, Building
Kentfield, California 94904

Mr. Dave Kirn, Program Manager
Swinerton Management & Consulting, Inc.
835 College Avenue, Building MS-3
Kentfield, California 94904

Subject: Draft Hazardous Building Materials Survey and
Hazardous Materials/Waste Assessment
Learning Resources Center, College of Marin
835 College Avenue, Kentfield, California

Dear Messrs. Nunez and Kirn:

In accordance with your authorization to proceed, Ninyo & Moore has performed a Hazardous Building Materials Survey and Hazardous Materials/Waste Assessment at Learning Resources Center, Kentfield Campus, College of Marin located at 835 College Avenue in the City of Kentfield, California. The attached report presents our methodology, findings, opinions, and recommendations regarding our survey and assessment.

We appreciate the opportunity to be of service to you on this important project. Should you have any questions regarding this report, please contact the undersigned at your convenience.

Sincerely,

NINYO & MOORE

DRAFT

William P. Larkin, CAC
Project Environmental Scientist
Certified Asbestos Consultant (Cert. No. 99-2688)
Lead-Related Construction Services Inspector/Assessor
and Project Monitor (Cert. No. 5543)

WPL/JRK/jms

Distribution: (2) Addressee
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Site Description</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Involved Parties</td>
<td>1</td>
</tr>
<tr>
<td>1.3 User Reliance</td>
<td>2</td>
</tr>
<tr>
<td>2. PURPOSE</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Hazardous Building Materials Survey</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Hazardous Materials/Waste Assessment</td>
<td>2</td>
</tr>
<tr>
<td>3. HAZARDOUS BUILDING MATERIALS SURVEY</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Hazardous Building Materials Survey</td>
<td>3</td>
</tr>
<tr>
<td>3.1.1 Scope of Work</td>
<td>3</td>
</tr>
<tr>
<td>3.1.2 Physical Limitations</td>
<td>4</td>
</tr>
<tr>
<td>3.1.3 Survey Activities and Sample Collection</td>
<td>4</td>
</tr>
<tr>
<td>3.1.4 Asbestos Survey</td>
<td>4</td>
</tr>
<tr>
<td>3.1.5 Lead-Based Paint Survey</td>
<td>5</td>
</tr>
<tr>
<td>3.1.6 Miscellaneous Hazardous Building Material Survey</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Laboratory Analysis and Results</td>
<td>6</td>
</tr>
<tr>
<td>3.2.1 Asbestos</td>
<td>6</td>
</tr>
<tr>
<td>3.2.2 Lead-Based Paint</td>
<td>6</td>
</tr>
<tr>
<td>3.2.3 Miscellaneous Hazardous Building Materials</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Findings</td>
<td>7</td>
</tr>
<tr>
<td>3.3.1 Asbestos</td>
<td>8</td>
</tr>
<tr>
<td>3.3.2 Lead-Based Paint</td>
<td>8</td>
</tr>
<tr>
<td>3.3.3 Miscellaneous Hazardous Building Material Survey</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Conclusions</td>
<td>9</td>
</tr>
<tr>
<td>3.5 Recommendations</td>
<td>9</td>
</tr>
<tr>
<td>4. HAZARDOUS MATERIALS/WASTE ASSESSMENT</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Hazardous Materials/Waste Assessment</td>
<td>11</td>
</tr>
<tr>
<td>4.1.1 Scope of Work</td>
<td>11</td>
</tr>
<tr>
<td>4.1.2 Physical Limitations</td>
<td>11</td>
</tr>
<tr>
<td>4.1.3 Current Uses</td>
<td>12</td>
</tr>
<tr>
<td>4.1.4 Historical Land Use</td>
<td>12</td>
</tr>
<tr>
<td>4.1.5 Physical Setting</td>
<td>12</td>
</tr>
<tr>
<td>4.1.6 Site Reconnaissance</td>
<td>13</td>
</tr>
<tr>
<td>4.1.7 Site-Specific Environmental Documents</td>
<td>16</td>
</tr>
<tr>
<td>4.1.8 Environmental Database Search</td>
<td>16</td>
</tr>
<tr>
<td>4.1.9 Environmental Records Review</td>
<td>17</td>
</tr>
<tr>
<td>4.2 Findings</td>
<td>17</td>
</tr>
<tr>
<td>4.3 Conclusions</td>
<td>20</td>
</tr>
<tr>
<td>4.4 Recommendations</td>
<td>21</td>
</tr>
</tbody>
</table>
5. PRELIMINARY MICROBIAL ASSESSMENT .. 21
 5.1. Preliminary Microbial Assessment ... 21
 5.2. Findings ... 22
 5.3. Conclusions .. 22
 5.4. Recommendations ... 22

6. LIMITATIONS ... 22

7. SELECTED REFERENCES .. 24

Tables
Table 1 – Asbestos Survey Results
Table 2 – Previous Asbestos Sampling Results
Table 3 – Lead-Based Paint Survey Results
Table 4 – Miscellaneous Hazardous Building Materials Survey Results

Figures
Figure 1 – Site Location Map
Figure 2 – College Location Map - Learning Resources Center
Figure 3 – Sample Location Map - First Floor West
Figure 4 – Sample Location Map - First Floor East
Figure 5 – Sample Location Map - Second Floor West
Figure 6 – Sample Location Map - Second Floor East
Figure 7 – Sample Location Map - Third Floor West

Appendices
Appendix A – Certifications
Appendix B – Asbestos Analytical Results and Chain-of-Custody Records
Appendix C – Previous Asbestos Analytical Results and Chain-of-Custody Records
Appendix D – Lead-based Paint Analytical Results and Chain-of-Custody Records
Appendix E – Photographs
Appendix F – Historic Environmental Documentation
1. INTRODUCTION
Ninyo & Moore conducted this Hazardous Building Material Survey (HBMS) and Hazardous Materials/Waste Assessment (HMWA) at the Learning Resources Center which is located in the central portion of what is known as the College of Marin’s Main Campus North located at 835 College Avenue in Kentfield, California (Figures 1 and 2). Ninyo & Moore performed the approved scope of work for the Marin Community College District (MCCD) and Swinerton Management & Consulting, Inc. (Swinerton) in general accordance with our Notice to Proceed letter, dated July 27, 2005, and Purchase Order No. P100521, dated September 20, 2005.

1.1. Site Description
The Learning Resources Center consists of one two-story structure with approximately 65,500-square feet of useable classrooms, offices, the reprographics department and the library. The Learning Resources Center was first constructed in 1971. The structure is of reinforced concrete construction, and building finishes include wallboard/joint compound assemblies, plaster, vinyl floor tiles/mastic, carpeted floors, acoustic ceiling tiles, and built-up roofing assemblies/mastic.

1.2. Involved Parties
Mr. William Larkin and Ms. Laura Osteen of Ninyo & Moore conducted the HBMS and HMWA on September 1, 2005, and performed interviews. Mr. Blair Bridges of Ninyo & Moore performed environmental data base and regulatory inquiries. A follow-up site visit was conducted by Ms. Laura Osteen on October 25, 2005. Mr. Joel Kushins attended the weekly consultant scoping meetings and provided project oversight and quality review. For the purposes of this assessment, the following individuals were interviewed regarding the current and historical uses and conditions at College of Marin, specifically the Learning Resources Center:
- Mr. Robert Thompson - Director of Maintenance and Operation, MCCD; and
- Ms. Mary Vidal - Health & Safety Coordinator, MCCD
Relevant information obtained during these interviews is presented in the appropriate sections of this report.

1.3. **User Reliance**
This report may be relied upon and is intended exclusively for use by the MCCD, Swinerton, and Steinberg Architects. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than MCCD, Swinerton, and Steinberg Architects is undertaken at said parties’ sole risk.

2. **PURPOSE**
The purpose of this HBMS and HMWA is to evaluate the existing environmental conditions of the Learning Resources Center, identify potential environmental risks, and provide recommendations for additional investigation or remediation.

2.1. **Hazardous Building Materials Survey**
A non-destructive HBMS was performed at Learning Resources Center to evaluate if potential hazards associated with the building materials, paint, or other miscellaneous hazardous building materials (potential mercury-containing thermostats, polychlorinated-biphenyls (PCB)-containing items, fluorescent light tubes, exit signs with low-level radioactive sources, and Freon™-containing refrigeration systems) may exist. Samples of building materials were collected to evaluate if asbestos, lead-based paint, and/or other miscellaneous hazardous building materials are present at the Learning Resources Center.

2.2. **Hazardous Materials/Waste Assessment**
The HMWA was performed at Learning Resources Center to evaluate hazardous materials and hazardous waste storage areas; and to generally confirm materials/waste quantities. In addition, Ninyo & Moore evaluated probable past building uses and their possible impact on the current environmental status of the Learning Resources Center.
3. HAZARDOUS BUILDING MATERIALS SURVEY

This section presents the HBMS for Learning Resources Center.

3.1. Hazardous Building Materials Survey

3.1.1. Scope of Work

The objective of the HBMS is to evaluate and quantify asbestos-containing materials (ACMs) and lead-based paint / lead-containing paint (LBP/LCP), potential mercury-containing thermostats/switches, PCBs-containing items (e.g., light ballasts, switches, and transformers), fluorescent light tubes, exit signs and Freon™-containing refrigeration systems. Ninyo & Moore personnel performed the services listed below.

- A review of analytical data provided by MCCD relating to past building material or paint chip sampling that occurred prior to Ninyo & Moore's HBMS activities and/or information relating to hazardous materials/waste administration and placement at Learning Resources Center.

- Visual assessment of accessible areas within Learning Resources Center to evaluate the possible presence of ACMs and LBP.

- Collection of 37 building material samples and submittal of these samples to an independent laboratory for analysis of asbestos content.

- Review of analytical results related to five bulk samples collected by MCCD maintenance staff at the Administration Center.

- Collection of five paint chip samples and submittal of these samples to an independent laboratory for analysis of lead content.

- Visual identification and quantification of potential mercury-containing thermostats/switches, PCB-containing items, fluorescent light tubes, exit signs (potential low-level radioactive sources), air conditioning units, and Freon™-containing refrigeration systems.

- Preparation of the HBMS which presents our data and summarizes the assessed materials. This portion of the report includes a site description, laboratory testing information, findings, opinions, and recommendations, sample location maps, and tables summarizing the building materials assessed, and the estimated quantities of identified materials.
3.1.2. Physical Limitations
Physical limitations were not encountered during the HBMS.

3.1.3. Survey Activities and Sample Collection
On September 1, 2005, Ninyo & Moore personnel conducted limited asbestos and LBP surveys at Learning Resources Center. The surveys followed U.S. Environmental Protection Agency (USEPA) guidelines, within the limitations of the scope of this assessment. The asbestos survey was performed by a California Certified Asbestos Consultant and consisted of collecting building materials suspected to contain asbestos from the structures. The LBP survey was conducted by a California Certified Lead Paint Inspector/Assessor and consisted of collecting paint-chip samples from the interiors and exteriors of the structure. In addition, Ninyo & Moore performed a visual assessment and quantified miscellaneous items that may potentially present a hazard during building renovation activities. The locations from which the bulk asbestos and LBP samples were collected are shown on Figures 3 through 7. Professional certifications are presented in Appendix A.

Building materials that were sampled and analyzed for the presence of asbestos and lead and a summary of miscellaneous hazardous building materials are presented in Tables 1 through 4. Laboratory test results for asbestos and lead are presented in Appendices B, C, and D.

3.1.4. Asbestos Survey
A preliminary visual assessment and bulk-sampling survey of suspect ACMs was performed. Representative samples of suspect ACMs were collected after identification of homogeneous sampling areas (areas in which the materials are uniform in color, texture, construction or application date, and general appearance). Each homogeneous area was observed for material type, location, condition, and friability. Representative samples were collected from each area, except from areas that were inaccessible, or from materials that were assumed to be asbestos-containing. Samples were collected using USEPA-
recommended sampling procedures. A total of 37 bulk asbestos samples were collected and analyzed. Additionally, information provided by MCCD maintenance staff indicated that 5 building material samples had previously been collected by MCCD staff. This information was used by Ninyo & Moore personnel in developing a sampling plan for Learning Resources Center. Materials that were confirmed to be asbestos-containing through the MCCD staff sampling efforts included wallboard/joint compound assemblies in Room 11 within the Learning Resources Center. Building materials that were sampled and analyzed for the presence of asbestos are presented in Table 1 (Ninyo & Moore) and Table 2 (MCCD staff).

3.1.5. Lead-Based Paint Survey

Paint chip sampling was conducted to assess the painted surfaces for both waste characterization and future contractor/worker safety. The survey was conducted in general accordance with accepted environmental science and engineering practices. A total of five paint-chip samples were analyzed. Painted surfaces that were sampled and analyzed for the presence of lead are presented in Table 3.

3.1.6. Miscellaneous Hazardous Building Material Survey

A visual assessment and quantification was performed of potential mercury-containing thermostats, PCB-containing items, fluorescent light tubes, exit signs, air conditioning units, and Freon™-containing refrigeration systems. Miscellaneous hazardous building materials observed at Learning Resources Center are presented in Table 4. In accordance with the scope of work, positive identification of these materials, via analytical testing, was not performed. A hydraulic elevator and associated equipment room are located on the southern side of Learning Resources Center. The elevator equipment room was observed to be clean with no signs of major stains or leaking.
3.2. Laboratory Analysis and Results

The following sections describe the laboratory analyses performed, laboratory results, and survey results regarding miscellaneous potentially-hazardous materials and equipment surveyed.

3.2.1. Asbestos

After collection, the ACM samples were transferred to R.J. Lee Group, Inc. (RJ Lee) for analysis. RJ Lee is a laboratory accredited in the National Voluntary Laboratory Accreditation Program (NVLAP) for bulk asbestos fiber analysis. The samples were analyzed for the presence and quantification of asbestos fibers, using polarized light microscopy with dispersion staining (PLM/ds), in general accordance with USEPA Method 600/M4-82-020. The lower limit of reliable detection for asbestos using the PLM method is approximately one percent (1%) by volume. Materials in which no asbestos was detected are defined in the laboratory report as “ND” in the “Asbestos Detected” column. The analytical results are summarized in Tables 1 and 2. Copies of the laboratory analytical report and chain-of-custody record are presented in Appendix B.

ACMs reported in this Ninyo & Moore survey include wallboard/joint compound assemblies within the Learning Resources Center, mastic associated with 12-inch by 12-inch beige vinyl floor tile (VFT) located in Room 69, 9-inch by 9-inch beige VFT with brown flecks and associated mastic located in Room 33, mastic associated with 12-inch by 12-inch white acoustic ceiling tiles (ACT) located throughout the Learning Resources Center, and black vapor barrier material located on the concrete foundation in the northwestern area of the Learning Resources Center.

3.2.2. Lead-Based Paint

After collection, the suspect LBP samples were transferred to RJ Lee for analysis of total lead content, in accordance with USEPA Test Method 7420. RJ Lee is an American Industrial Hygiene Association accredited Environmental Lead Laboratory (AIHA
ELLA). Currently, the USEPA stipulates what concentrations of lead in nonvolatile components of surface coatings or materials determine whether a material is considered to be LBP. The USEPA stipulates that materials containing an amount equal to or in excess of one milligram per square centimeter (1.0 mg/cm²), or more than half of one percent (0.5%) by weight (or 5,000 milligrams per kilogram [mg/kg]), constitute a LBP. The U.S. Department of Housing and Urban Development (HUD) guideline for designating a painted surface as lead-containing is consistent with the Department of Health Services (DHS). Paint that is chipping or peeling, or that may be removed from surfaces, and has a lead content equal to or greater than 1,000 mg/kg, would require handling as a California Title 22 hazardous waste. The analytical results associated with paint chip samples collected from Learning Resources Center are summarized in Table 3. Copies of the laboratory analytical report and chain-of-custody record are presented in Appendix C.

The five paint chip samples collected were reported to have varying concentrations of lead ranging from <55.3 mg/kg to <336 mg/kg. While not LBP, these coatings are lead-containing paint (LCP). Occupational Health and Safety Administration (OSHA) regulations apply whenever materials with any detectable amounts of lead are disturbed.

3.2.3. Miscellaneous Hazardous Building Materials
As indicated above, positive identification of miscellaneous hazardous building materials, via analytical testing, was not performed for this survey. Potentially hazardous miscellaneous building materials observed and quantified at Learning Resources Center are presented in Table 4.

3.3. Findings
A non-destructive HBMS was performed at Learning Resources Center to evaluate potential hazards associated with the building materials, paint, or other miscellaneous hazardous building materials (potential mercury-containing thermostats, PCB-containing items, fluorescent light tubes, exit signs with low-level radioactive sources, and Freon™-containing
refrigeration systems) may exist. Samples of building materials were collected to evaluate if asbestos, lead-based paint, and/or other miscellaneous hazardous building materials are present at Learning Resources Center.

Asbestos-containing materials and LCP (any concentration of lead) are located at Learning Resources Center, based on the analytical results of bulk samples collected during this limited survey.

3.3.1. Asbestos
A total of 37 bulk asbestos samples were collected and analyzed. Additionally, information provided by MCCD maintenance staff indicated that five building material samples had previously been collected by MCCD staff. Materials that were confirmed to be asbestos-containing through the MCCD staff and Ninyo & Moore sampling efforts included wallboard/joint compound assemblies within the Learning Resources Center, mastic associated with 12-inch by 12-inch beige vinyl floor tile (VFT) located in Room 69, 9-inch by 9-inch beige VFT with brown flecks and associated mastic located in Room 33, mastic associated with 12-inch by 12-inch white acoustic ceiling tiles (ACT) located throughout the Learning Resources Center, and black vapor barrier material located on the concrete foundation in the northwestern area of the Learning Resources Center.

3.3.2. Lead-Based Paint
The five paint chip samples collected were reported as lead-containing paint (LCP) with detectible concentrations of lead, with varying concentrations of lead ranging from <55.3 mg/kg to 336 mg/kg. While not LBP, these coatings are LCP. Occupational Health and Safety Administration regulations apply whenever materials with any detectable amounts of lead are disturbed.

When lead is present in any amount in the surface coating, Title 8 of the California Code of Regulations, Section 1532.1 requires basic protective measures for workers when they perform specific "trigger" tasks (e.g. scraping, sanding, heat gun application, manual demolition of structures, power tool cleaning, lead burning, rivet busting, abra-
sive blasting, welding, cutting, torch burning, etc.). These requirements are mandated regardless of the level of lead present in the material or surface coating unless a Negative Exposure Assessment reveals worker exposure to be below the established action levels.

3.3.3. Miscellaneous Hazardous Building Material Survey

Miscellaneous hazardous building materials observed at the Learning Resources Center included electric transformers, potential PCB-containing light ballasts; potential mercury-containing thermostats; air conditioning units; fluorescent light tubes; and exit signs (potential low-level radioactive sources).

3.4. Conclusions

Asbestos-containing materials and LCP are present at Learning Resources Center. This does not mean that the health of the occupants is endangered. The materials are in good, undisturbed condition (except for paint chip sample LC-LBP-01 in Room 94); therefore, exposure to building occupants is expected to be negligible. If these materials deteriorate over time, are damaged, or are disturbed, such as during renovation or demolition operations, then asbestos fibers and/or lead dust may be released, creating a potential health hazard for building occupants, maintenance personnel, and contractors.

3.5. Recommendations

Since ACMs, LCP, and miscellaneous hazardous building materials have been reported by RJ Lee at Learning Resources Center, the following recommendations and precautions are provided:

- The reported ACMs at Learning Resources Center should be incorporated into a building-specific Operations and Maintenance (O&M) Plan. These ACMs should not be disturbed. Any ACM in damaged condition should be promptly repaired or abated. Prior to renovation or demolition work that would disturb ACMs, a licensed asbestos abatement removal contractor should remove the ACMs. While Ninyo & Moore provided an estimate of the quantity of ACMs present at Learning Resources Center (Table 1), it is the abatement contractor’s responsibility to confirm ACM quantities present.
• The LCP reported at Learning Resources Center should be incorporated into a building-specific O&M Plan. This LCP should not be disturbed. Any LCP in a damaged or non-intact condition should be abated and/or stabilized. Prior to renovation or demolition work that would disturb LCP, a licensed lead abatement removal contractor should stabilize and/or remove the identified LCP. If demolition is to be accomplished, then complete and continual water wetdown prior to and during demolition is required. While Ninyo & Moore provided an estimate of the quantity of LCP present at Learning Resources Center (Table 3), it is the abatement contractor’s responsibility to confirm LCP quantities present.

• Prior to demolition or renovation activities, electric transformers, potential PCB-containing light ballasts; potential mercury-containing thermostats; air conditioning units; fluorescent light tubes; and exit signs (potential low-level radioactive sources) should be removed and properly recycled or disposed by a licensed contractor. While Ninyo & Moore provided an estimate of the quantity of miscellaneous hazardous building materials present at Learning Resources Center, it is the abatement contractor’s responsibility to confirm the quantities of items present.

• There is a possibility that additional suspect ACMs, LBP, LCP, or other miscellaneous hazardous building materials may be discovered during building renovations or demolition, because non-destructive sampling techniques were employed during this HBMS. Therefore, Ninyo & Moore recommends that a more specific destructive survey be implemented at the Learning Resource Center prior to any renovation or demolition of the building. If this destructive survey is not implemented, Ninyo & Moore recommends that, should additional suspect materials not sampled or assessed in this report be uncovered during renovation, (a) samples of suspect materials should be collected for laboratory analysis and activities that may impact the materials should cease until laboratory analytical results are reviewed or (b) the materials should be assumed to be hazardous and handled as such.

4. HAZARDOUS MATERIALS/WASTE ASSESSMENT
This section presents the HMWA for the Learning Resources Center. Color photographs are presented in Appendix E and pertinent historic environmental documentation is presented in Appendix F.
4.1. **Hazardous Materials/Waste Assessment**

4.1.1. **Scope of Work**

The objective of the HMWA is to locate and evaluate hazardous materials and hazardous waste storage areas; and to generally confirm materials/waste quantities. In addition, Ninyo & Moore evaluated probable past building uses and their possible impact on the current environmental status of the Learning Resources Center. Ninyo & Moore personnel performed the services listed below.

- Review and evaluate readily available maps, existing environmental assessment documents, records, permits, and monitoring programs pertaining to the Learning Resources Center.

- Conduct interviews with MCCD staff regarding the environmental status of the Learning Resources Center.

- Perform a site reconnaissance to observe areas of improperly stored hazardous materials/wastes and possible risks of contamination from activities at the Learning Resources Center.

- Review readily available local regulatory agency files. Requests were made to the City of Kentfield Fire Department (KFD), Marin County Building Department (MCBD), Marin County Office of Waste Management (MCOWM), Department of Toxic Substances Control (DTSC), Regional Water Quality Control Board (RWQCB), and the Bay Area Air Quality Management District (BAAQMD).

- Review available regulatory agency databases. Databases report locations of known hazardous waste sites, landfills, and leaking underground storage tanks, permitted facilities that utilize underground storage tanks, and facilities that use, store or dispose of hazardous materials.

- Review readily available historical documents, including aerial photograph, Sanborn Insurance Maps, Building Department Records, and reverse city directories, as appropriate.

- Preparation of the HMWA report documenting findings, conclusions, and recommendations regarding possible environmental impacts at the Learning Resources Center.

4.1.2. **Physical Limitations**

Physical limitations were not encountered during the site reconnaissance.
4.1.3. Current Uses

The Learning Resources Center is used for useable classrooms, offices, the reprographics department, and the library. It also contains a reprographics photographic development laboratory.

4.1.4. Historical Land Use

Ninyo & Moore conducted a historical record search for both the Learning Resources Center and adjacent areas. This included a review of the following sources that were found to be both reasonably ascertainable and useful for the purposes of this HMWA: historical aerial photographs, historical city directories, building permits and plans, Sanborn maps, and topographic maps.

From the reviewed maps and documents, it was noted that adjacent buildings were used as part of the Marin Junior College or the College of Marin since at least 1942. The Learning Resources Center building was constructed in 1971 to its current configuration. The site that the Learning Resource Center now sites was once occupied by a parking lot and the recreation hall. There appears to be a low to moderate likelihood that the immediate site and adjacent buildings or properties have adversely affected the environmental integrity of the Learning Resources Center, based on the historical record search.

4.1.5. Physical Setting

The Learning Resources Center is located in the southern portion of what is known as the College of Marin’s Main Campus North. The Kentfield Campus is situated on the topographic low lying areas of the Corte Madera Creek watershed in Ross Valley. Groundwater flow direction at two properties located 0.9 miles northwest and 0.55 miles southeast of the Learning Resources Center were found to range from northeast to east, based on information found in the Environmental Data Resources, Inc. (EDR) report and regulatory file reviews. Depth to groundwater was reported at a location
located 900 feet south of the Learning Resources Center as approximately 9 feet below ground surface (bgs).

4.1.6. Site Reconnaissance

4.1.6.1. Use and Storage of Hazardous Materials

The reprographics photo developing lab, Room 63, is located on the first (ground) floor of the Learning Resources Center. One 15-gallon plastic container of rapid developer, one one-gallon plastic container of electrostatic solution, and one one-gallon plastic container of hardener concentration was observed in Room 63. The one 15-gallon plastic container of developer was stored in the manufactured box with a sign on the box stating that it was old. The expiration date on the manufactured box indicated that the developer had expired in February 2003. These hazardous materials were not stored in code-compliant storage cabinets per the California Fire Code (CFC) and California Building Code (CBC), and signs of staining and spillage of these materials was observed during the site reconnaissance.

The reprographics department is located in one the first floor of the Learning Resources Center in Rooms 70 and 71. Paint, spray adhesive and various colors of ink were observed in the reprographics department. These hazardous materials were not stored in code-compliant storage cabinets per the CFC and CBC; however, signs of staining and spillage of these materials was not observed during the site reconnaissance.

The elevator operations room is located on the first floor in Room 18. One five-gallon metal container of hydraulic fluid related to elevator operations was left open. This hazardous material was not stored in code-compliant storage cabinets per the CFC and CBC; however, signs of staining and spillage of these materials were not observed during the site reconnaissance.
Hazardous materials were also observed in a store room, Room 80, located on the first floor of the Learning Resources Center. One one-gallon container of solvent, two five-gallon containers of latex paint and 20 spray cans of paint were observed in Room 80. This hazardous material was not stored in code-compliant storage cabinets per the CFC and CBC; however, signs of staining and spillage of these materials were not observed during the site reconnaissance.

4.1.6.2. Storage and Disposal of Hazardous Waste

The reprographics photo developing lab, Room 63, is located on the first (ground) floor of the Learning Resources Center. One ten-gallon plastic container of rapid film fixer and one ten-gallon plastic container of developer were observed in Room 63. This hazardous waste was not stored in double-walled containers or approved secondary containment structures per CFC and CBC and signs of significant staining or spillage of these materials were observed during the site reconnaissance.

4.1.6.3. Unidentified Substance Containers

Unidentified substance containers were not observed during the site reconnaissance.

4.1.6.4. Storage Tanks

Signs of above-ground or underground storage tanks were not observed during the site reconnaissance.

4.1.6.5. Transformers

Transformers were observed in the vicinity of the Learning Resources Center. One transformer is located on the eastern side of the building in Room 92. Another small dry type transformer was also located on the eastern side of the building in Room 47.
4.1.6.6. **Back-up Power Generators**

Back-up power generators were not observed during the site reconnaissance.

4.1.6.7. **Elevators**

A hydraulic elevator and associated elevator equipment room was observed in central area of the Learning Resources Center. No signs of significant spills or staining were observed.

4.1.6.8. **Evidence of Releases**

Evidence of release of hazardous materials or wastes was observed in the reprographics photo lab (Room 63) during the site reconnaissance. The floor tiles in the room had signs of staining and spillage observed. There is a low/moderate probability that the environmental integrity of the Learning Resources Center has been impacted by the release of hazardous materials or waste in the reprographics photo developing lab.

4.1.6.9. **Fume Hoods**

Fume hoods were observed in the reprographics department including the photo developing lab. Six vent hoods were observed in the reprographics department, Room 71 and one vent hood was located in the photo developing lab, Room 63.

Ninyo & Moore did not evaluate the effectiveness of these systems. AlphaTech, the ventilation subcontractor for this project, is performing an evaluation of the duct work and their conclusions will be detailed in their report under a separate cover.

4.1.6.10. **Existing Wells**

Groundwater supply or monitoring wells were not observed during the site reconnaissance.
4.1.6.11. Miscellaneous Environmental Issues

Additional environmental issues associated with the Learning Resource Center were ascertained during this HMWA. A 3-inch cast iron acid waste drain was observed on architectural drawing from Corwin Booth & Associated Architects. This acid waste pipe collects liquid from the reprographics photo lab and the waste is discharged into an existing 6-inch sanitary sewer. The acid line had no signs of acid neutralization before discharge to the public sewer.

4.1.7. Site-Specific Environmental Documents

Ms. Mary Vidal, Health & Safety Coordinator (part-time), and Mr. Robert Thompson, Director of Maintenance and Operation for the College of Marin campuses, were very helpful, participating in interviews and providing environmental documents for review prior to our site reconnaissance. The Hazardous Materials Business Plan (College of Marin 2003) and Hazardous Materials Report (Keenan 2004) were provided to Ninyo & Moore. Although these reports are “snap shot” inventories for when the work was performed, they represent typical chemical and waste inventories that can be found at the Kentfield campus.

Copies of Material Safety Data Sheets (MSDS) are located at the Health & Safety and the Facility Maintenance & Operation offices, not in the reprographics photo developing lab.

4.1.8. Environmental Database Search

A computerized, environmental information database search was performed by Environmental Data Resources, Inc. (EDR) on August 30, 2005. The EDR search included federal, state, and local databases. The review was conducted to evaluate whether the College of Marin or properties within the vicinity of Learning Resources Center have been reported as having experienced significant unauthorized releases of hazardous substances or other events with potentially adverse environmental effects.
The College of Marin was listed on three databases: Underground Storage Tank (UST), Historic Underground Storage Tank (HIST UST), and the California Facility Inventory (CA FID) database. These databases pertain to the underground storage tank (UST) that was removed in 1991 from the maintenance yard at the College of Marin, Kentfield campus. The UST will be discussed in the HBMS and HMWA report for the maintenance yard.

Adjacent properties and non-geocoded facilities that were listed on the EDR report have a low likelihood of impacting the environmental integrity of Learning Resources Center.

4.1.9. Environmental Records Review

Environmental records for the College of Marin and adjacent properties were requested from the KFD, MCBD, MCOWM, DTSC, RWQCB, and the BAAQMD. The MCOWM and RWQCB had hazardous waste generator inspection summaries documenting violations for the College of Marin, Kentfield Campus. Violations reported at Learning Resources Center included unlabeled photo processing waste drums and the exceedance of the storage limit for photo processing waste. Another violation noted during an inspection found that a container cap was not in place in a photo processing dark room. It is unknown if this violation occurred in the Learning Resources Center dark room or the Fusselman Hall dark room. Other more general violations noted include: failure to inspect hazardous waste container storage areas weekly, record keeping, and to comply with annual personnel hazardous waste training.

4.2. Findings

An HMWA was performed at Learning Resources Center to evaluate where and how hazardous materials and waste are stored and to estimate quantities. During historic research of environmental documents and building reconnaissance, hazardous materials and waste were found in the building.
The reprographics photo developing lab, Room 63, is located on the first (ground) floor of the Learning Resources Center. One 15-gallon plastic container of rapid developer, one one-gallon plastic container of electrostatic solution, and one one-gallon plastic container of hardener concentration was observed in Room 63. The one 15-gallon plastic container of developer was stored in the manufactured box with a sign on the box stating that it was old. The expiration date on the manufactured box indicated that the developer had expired in February 2003. These hazardous materials were not stored in code-compliant storage cabinets per the California Fire Code (CFC) and California Building Code (CBC), and signs of staining and spillage of these materials were observed during the site reconnaissance.

The reprographics department is located on the first floor of the Learning Resources Center in Rooms 70 and 71. Paint, spray adhesive and various colors of ink were observed in the reprographics department. These hazardous materials were not stored in code-compliant storage cabinets per the CFC and CBC; however, signs of staining and spillage of these materials were not observed during the site reconnaissance.

The elevator operations room is located on the first floor in Room 18. One five-gallon metal container of hydraulic fluid related to elevator operations was left open. This hazardous material was not stored in code-compliant storage cabinets per the CFC and CBC; however, signs of staining and spillage of these materials were not observed during the site reconnaissance.

Hazardous materials were also observed in a store room, Room 80, located on the first floor of the Learning Resources Center. One one-gallon container of solvent, two five-gallon containers of latex paint, and 20 spray cans of paint were observed in Room 80. This hazardous material was not stored in code-compliant storage cabinets per the CFC and CBC; however, signs of staining and spillage of these materials were not observed during the site reconnaissance.

Hazardous waste was located in the reprographics photo developing lab, Room 63, on the first (ground) floor of the Learning Resources Center. One ten-gallon plastic container of
rapid film fixer and one ten-gallon plastic container of developer were observed in Room 63. This hazardous waste was not stored in double-walled containers or approved secondary containment structures per CFC and CBC and signs of significant staining or spillage of these materials were observed during the site reconnaissance.

Additional environmental issues associated with the Learning Resource Center were ascertained during this HMWA. A 3-inch cast iron acid waste drain was observed on architectural drawing from Corwin Booth & Associated Architects. This acid waste pipe collects liquid from the reprographics photo lab and the waste is discharged into an existing 6-inch sanitary sewer. The acid line had no signs of acid neutralization before discharge to the public sewer.

Fume hoods were observed in the reprographics department including the photo developing lab.

Ms. Mary Vidal, Health & Safety Coordinator (part-time), and Mr. Robert Thompson, Director of Maintenance and Operation for the College of Marin campuses, were very helpful, participating in interviews and providing environmental documents for review. The Hazardous Materials Business Plan (College of Marin 2003) and Hazardous Materials Report (Keenan 2004) were provided to Ninio & Moore. Although these reports are “snap shot” inventories for when the work was performed, they represent typical chemical and waste inventories that can be found at the Kentfield campus.

Copies of Material Safety Data Sheets (MSDS) are located at the Health & Safety and the Facility Maintenance & Operation offices, but were not observed in the reprographics department, photo developing lab, elevator equipment room, or storage room.

In addition, records for the College of Marin and adjacent properties were requested from the KFD, MCBD, MCOWM, DTSC, RWQCB, and the BAAQMD. The MCOWM and RWQCB had hazardous waste generator inspection summaries documenting violations for the College of Marin, Kentfield Campus. Violations reported at Learning Resources Center included unlabeled photo processing waste drums and the exceedance of the storage limit for photo processing waste. Another violation noted during an inspection found that a con-
tainer cap was not in place in a photo processing dark room. It is unknown if this violation
occurred in the Learning Resources Center dark room or the Fusselman Hall dark room.
Other more general violations noted include: failure to inspect hazardous waste container
storage areas weekly, record keeping, and to comply with annual personnel hazardous waste
training.

4.3. Conclusions
Hazardous materials and waste, located in the Learning Resources Center, were not stored in
code-compliant storage cabinets and signs of significant staining or spillage of these materi-
als was observed during the building reconnaissance. There is a low to moderate probability
that these materials have impacted the Learning Resources Center.

Acid waste line discharge may require pretreatment and permitting before discharged into
the public sewer line.

Fume hoods observed in the reprographics department and photo lab may not provide ade-
quate exchange of air for the intended use of the laboratory.

Although hazardous materials and hazardous waste inventories are tracked by the District,
there is no central point of contact for “chain of responsibility” for hazardous materi-
als/wastes, MCCD-wide or campus-specific, for the purpose of inventory, handling,
permitting, safety, training, and waste management (including e-waste). A single repository
for environmental documents has not been established for either MCCD or for each of the
campuses.

Copies of Material Safety Data Sheets (MSDS) are located at the Health & Safety and the
Facility Maintenance & Operation offices, but were not observed in the reprographics de-
partment, the photo developing lab, elevator equipment room, or storage room.
4.4. Recommendations

The following recommendations are provided due to the identified hazardous materials and waste at the Learning Resources Center:

- Store hazardous materials in code-compliant storage cabinets.
- Maintain the quantities of chemicals in storage and use within the allowable range per fire and building codes.
- Update the Hazardous Materials Report (hazardous materials inventory survey) on a regular basis to reflect the actual chemical inventories.
- Maintain good housekeeping practices for the storage of hazardous materials and waste.
- Store only hazardous materials that have not expired. When the hazardous material does expire, dispose of properly.
- Store hazardous waste in code-compliant double-walled containers or approved secondary containment structures.
- Contact the public owned treatment works department to evaluate requirements for acid waste line pre-treatment and permitting.
- Provide adequate ventilation/exhaust hoods in the photographic development and production classrooms.
- Update the Hazardous Materials Business Plan on a regular basis to reflect the actual chemical and waste inventories.
- Provide a central point of contact for “chain of responsibility” for hazardous materials/wastes MCCD wide or at each of the campuses.
- Provide a complete set of MSDS and make available and useable where hazardous materials are stored and processed.
- Inventory and remove hazardous materials and hazardous waste prior to renovation or demolition.

5. PRELIMINARY MICROBIAL ASSESSMENT

This section presents the HMWA for the Disabled Student Center.

5.1. Preliminary Microbial Assessment

A Preliminary Microbial Assessment was performed by Ninyo & Moore personnel at the Learning Resources Center in response to MCCD staff requests.
5.2. Findings

Background/baseline microbial air sampling was conducted in the supply air and return air plenums/tunnels, Room 32 and Room 127 of the Learning Resource Center. The analytical results associated with the microbial air sampling conducted at the Learning Resources Center on Saturday, October 29, 2005, show somewhat elevated concentrations of Cladosporium spores in the supply air and return air plenums/tunnels and Room 127 and a slightly elevated concentration of Penicillium/Aspergillus spores in the supply air plenum/tunnel.

5.3. Conclusions

These concentrations do not in and of themselves indicate a significantly elevated mold spore condition within the tested areas and may or may not be an indicator of an interior reservoir of mold.

5.4. Recommendations

Further assessment is recommended. The next step would be to examine the air handling unit associated with the affected supply/return plenums/tunnels and observe the coil, drain pan, and fan to see if there is obvious mold contamination of these areas. If so, the collection of a tape sample of the material may be warranted.

6. LIMITATIONS

Ninyo & Moore's findings, opinions, and recommendations regarding environmental conditions, as presented in this report, are based on limited sampling and chemical analysis, with the exception of the inventory for miscellaneous hazardous building materials. Further assessment of potential adverse environmental impacts may be accomplished by a more comprehensive assessment. The samples collected and used for testing, and the observations made, are believed to be representative of the area(s) evaluated. However, if additional suspect ACMs, miscellaneous hazardous building materials, or LBP/LCP are encountered during renovation or demolition activities, these materials should be sampled by qualified personnel, and analyzed for content prior to further disturbance. In addition, please note that quantities of ACMs, miscellaneous hazardous
building materials, and LBP/LCP are approximate. It is the contractor's responsibility to confirm ACM, miscellaneous hazardous building materials and LBP/LCP quantities present.

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard of care exercised by environmental consultants performing similar work in the project area. No warranty, expressed or implied, is made regarding the professional opinions presented in this report. Variations in site conditions may exist and conditions not observed or described in this report may be encountered during subsequent activities. Please also note that this study did not include an evaluation of subsurface environmental, geotechnical conditions, or potential geologic hazards.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.

The environmental findings, opinions, and recommendations contained in this report are based on the results of laboratory tests and analyses intended to detect the presence and concentration of specific chemical or physical constituents in samples collected from the site. The testing and analyses have been conducted by an independent laboratory that is certified by the State of California to conduct such tests. Ninyo & Moore has no involvement in, or control over, such testing and analysis. Ninyo & Moore, therefore, disclaims responsibility for any inaccuracy in such laboratory results.

Our findings, opinions, and recommendations are based on an analysis of the observed site conditions. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.
7. SELECTED REFERENCES

The following references are of documents (or partial documents) used by Ninyo & Moore in promulgating findings, conclusions, and recommendations for the abatement of hazardous building materials and hazardous materials/wastes related to future renovation and/or demolition activities at Learning Resources Center:

Environmental Resources Group, Inc. (ERG), 2001, Summary of Previous Remedial Actions and Work Plan to Investigate Former Underground Storage Tanks at College of Marin, Kentfield and Indian Valley Campus, Prepared for College of Marin, Kentfield, California: dated August.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Bldg. No.</th>
<th>Material Location</th>
<th>Sample Description</th>
<th>Approximate Quantity (SF/FT^2/EA)</th>
<th>Visible Y/N</th>
<th>Condition</th>
<th>Asbestos Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-ASB-01</td>
<td>LC</td>
<td>Room 65</td>
<td>Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Wallboard - ND</td>
</tr>
<tr>
<td>LC-ASB-02</td>
<td>LC</td>
<td>Room 65</td>
<td>Baseboard Mastic</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Joint Compound - ND</td>
</tr>
<tr>
<td>LC-ASB-03</td>
<td>LC</td>
<td>Room 69</td>
<td>12" x 12" Beige Vinyl Floor Tile (VFT) with Brown Flecks</td>
<td>400 SF</td>
<td>N/A</td>
<td>N/A</td>
<td>White Adhesive - ND</td>
</tr>
<tr>
<td>LC-ASB-04</td>
<td>LC</td>
<td>Room 69</td>
<td>Mastic Associated with LC-ASB-03</td>
<td>400 SF</td>
<td>N</td>
<td>Intact</td>
<td>Brown Adhesive - ND</td>
</tr>
<tr>
<td>LC-ASB-05</td>
<td>LC</td>
<td>Room 69</td>
<td>2" x 4" Foam Lay-in Acoustic Ceiling Tile (ACT)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-06</td>
<td>LC</td>
<td>Room 54</td>
<td>12" x 12" White ACT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-07</td>
<td>LC</td>
<td>Room 54</td>
<td>Mastic Associated with LC-ASB-06</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-08</td>
<td>LC</td>
<td>Room 54</td>
<td>Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Wallboard - ND</td>
</tr>
<tr>
<td>LC-ASB-09</td>
<td>LC</td>
<td>Room 52</td>
<td>12" x 12" White ACT with Random Fissures</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Joint Compound - ND</td>
</tr>
<tr>
<td>LC-ASB-10</td>
<td>LC</td>
<td>Room 32</td>
<td>2" x 4" Non-Foam Lay-In ACT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-11</td>
<td>LC</td>
<td>Room 33</td>
<td>9" x 9" Beige VFT with Brown Flecks</td>
<td>300 SF</td>
<td>N</td>
<td>Intact</td>
<td>2% CH</td>
</tr>
<tr>
<td>LC-ASB-12</td>
<td>LC</td>
<td>Room 33</td>
<td>Mastic Associated with LC-ASB-11</td>
<td>300 SF</td>
<td>N</td>
<td>Intact</td>
<td>Not Analyzed (Assumed)</td>
</tr>
<tr>
<td>LC-ASB-13</td>
<td>LC</td>
<td>Room 35</td>
<td>Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Wallboard - ND</td>
</tr>
<tr>
<td>LC-ASB-14</td>
<td>LC</td>
<td>Room 16</td>
<td>Wallboard/Joint Compound</td>
<td>10,000 SF</td>
<td>Y</td>
<td>Intact</td>
<td>Joint Compound - ND</td>
</tr>
<tr>
<td>LC-ASB-15</td>
<td>LC</td>
<td>Room 11</td>
<td>Pink Wall Tile</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Wallboard - ND</td>
</tr>
<tr>
<td>LC-ASB-16</td>
<td>LC</td>
<td>Room 77</td>
<td>Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Joint Compound - ND</td>
</tr>
<tr>
<td>LC-ASB-17</td>
<td>LC</td>
<td>Room 140</td>
<td>Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Wallboard - ND</td>
</tr>
<tr>
<td>LC-ASB-18</td>
<td>LC</td>
<td>Room 140</td>
<td>12" x 12" White Ceiling Tile (On Wall)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Joint Compound - <1% CH</td>
</tr>
<tr>
<td>LC-ASB-19</td>
<td>LC</td>
<td>Room 140</td>
<td>Mastic Associated with LC-ASB-18</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-20</td>
<td>LC</td>
<td>Room 140</td>
<td>12" x 12" White ACT with Random Fissures</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-21</td>
<td>LC</td>
<td>Room 140</td>
<td>Mastic Associated with LC-ASB-20</td>
<td>N</td>
<td>Intact</td>
<td></td>
<td><1% CH</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Bldg. No.</td>
<td>Material Location</td>
<td>Sample Description</td>
<td>Approximate Quantity (SF/TE/EA)</td>
<td>Flammable</td>
<td>Condition</td>
<td>Asbestos Content</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>LC-ASB-22</td>
<td>LC</td>
<td>Room 140</td>
<td>Cove Base and Associated Mastic</td>
<td>N/A</td>
<td>N/A</td>
<td>Intact</td>
<td>Covebase - ND Mastic ND</td>
</tr>
<tr>
<td>LC-ASB-23</td>
<td>LC</td>
<td>Room 150</td>
<td>Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Wallboard - ND Joint Compound <1% CH</td>
</tr>
<tr>
<td>LC-ASB-24</td>
<td>LC</td>
<td>Room 111</td>
<td>Plaster/Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Plaster/Wallboard - ND Joint Compound - <1% CH</td>
</tr>
<tr>
<td>LC-ASB-25</td>
<td>LC</td>
<td>Room 111</td>
<td>Plaster/Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Plaster/Wallboard - ND Joint Compound - <1% CH</td>
</tr>
<tr>
<td>LC-ASB-26</td>
<td>LC</td>
<td>Room 136</td>
<td>Plaster/Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Plaster/Wallboard - ND Joint Compound - <1% CH</td>
</tr>
<tr>
<td>LC-ASB-27</td>
<td>LC</td>
<td>Room 136</td>
<td>Plaster/Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td><1% CH (Joint Compound Only)</td>
</tr>
<tr>
<td>LC-ASB-28</td>
<td>LC</td>
<td>Room 136</td>
<td>Plaster/Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Plaster/Wallboard - ND Joint Compound - ND</td>
</tr>
<tr>
<td>LC-ASB-29</td>
<td>LC</td>
<td>Room 100</td>
<td>Plaster/Wallboard/Joint Compound</td>
<td>See LC-ASB-14</td>
<td>Y</td>
<td>Intact</td>
<td>Plaster/Wallboard - ND Joint Compound - <1% CH</td>
</tr>
<tr>
<td>LC-ASB-30</td>
<td>LC</td>
<td>Roof/South</td>
<td>Roof Assembly</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-31</td>
<td>LC</td>
<td>Roof/North</td>
<td>Roof Assembly</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-32</td>
<td>LC</td>
<td>Roof/Central/Raised</td>
<td>Roof Assembly</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-33</td>
<td>LC</td>
<td>Roof/East</td>
<td>Roof Mastic</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-34</td>
<td>LC</td>
<td>Roof/West</td>
<td>Roof Mastic</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-35</td>
<td>LC</td>
<td>Roof/West</td>
<td>HVAC Duct Vibration/Joint Cloth</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-36</td>
<td>LC</td>
<td>Room 130</td>
<td>2' x 4' ACT with Pin Holes</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LC-ASB-37</td>
<td>LC</td>
<td>Exterior Foundation/Northwest Side</td>
<td>Wall Covering/Vapor Barrier</td>
<td>500 SF</td>
<td>N</td>
<td>Good</td>
<td>5% CH</td>
</tr>
</tbody>
</table>

NOTES:

SF = Square feet
CH = Chrysotile Asbestos
ND = None detected
N/A = Not applicable/ Not Analyzed

Non-destructive sampling techniques were utilized during this sampling survey.
Estimated quantities are not intended for use in bidding calculations.
Table 2 - Previous Asbestos Sampling Results

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Bldg. No.</th>
<th>Sample Location</th>
<th>Sample Description</th>
<th>Approximate Quantity (SF/LF/EA)</th>
<th>Friable Y/N</th>
<th>Condition</th>
<th>Asbestos Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRC-1</td>
<td>LC</td>
<td>Room 11</td>
<td>Muddled Joint Insulation</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>LRC-2</td>
<td>LC</td>
<td>Room 11</td>
<td>Sheetrock/Tape/Mud</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>6% CH</td>
</tr>
<tr>
<td>971097</td>
<td>LC</td>
<td>Room 11</td>
<td>Pipe Insulation</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>921059</td>
<td>LC</td>
<td>Room 11</td>
<td>Pipe Insulation</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
<tr>
<td>931726</td>
<td>LC</td>
<td>Room 100</td>
<td>Sheetrock/Tape/Mud</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ND</td>
</tr>
</tbody>
</table>

NOTES:

SF = Square feet

Laboratory identification numbers were used when client sample numbers were found to be the same for multiple samples.

ND = None detected

N/A = Not applicable/Not Available

Quantities and condition of materials were not stated in the analytical information reviewed.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Bldg. No.</th>
<th>Sample Location</th>
<th>Lead-Containing Surface (LCS) (e.g., door, wall, frame)</th>
<th>Sample Description</th>
<th>Condition</th>
<th>Estimate of Surface Area</th>
<th>Total Lead (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-LBP-01</td>
<td>LC</td>
<td>Room 94</td>
<td>Wall</td>
<td>White/2/Wallboard</td>
<td>Non-Intact</td>
<td>10,000 SF</td>
<td><185</td>
</tr>
<tr>
<td>LC-LBP-02</td>
<td>LC</td>
<td>Room 111</td>
<td>Wall</td>
<td>Orange/2/Plaster</td>
<td>Intact</td>
<td>200 SF</td>
<td><336</td>
</tr>
<tr>
<td>LC-LBP-03</td>
<td>LC</td>
<td>Roof</td>
<td>Duct</td>
<td>Gray/2/Metal</td>
<td>Intact</td>
<td>100 SF</td>
<td><55.3</td>
</tr>
<tr>
<td>LC-LBP-04</td>
<td>LC</td>
<td>Room 45</td>
<td>Beam</td>
<td>White/2/Concrete</td>
<td>Intact</td>
<td>2,000 SF</td>
<td><211</td>
</tr>
<tr>
<td>LC-LBP-05</td>
<td>LC</td>
<td>Room 54</td>
<td>Wall</td>
<td>Cream/2/Wallboard</td>
<td>Intact</td>
<td>10,000 SF</td>
<td><330</td>
</tr>
</tbody>
</table>

NOTES:
Total lead analyzed in accordance with EPA test method 6010
mg/kg = Milligrams per kilogram
SF = Square feet

The LCS presented in this table are materials that meet or exceed the criteria of Cal DHS. LCS in this table do not necessarily identify all material that could contain lead at concentrations less than 1.0 mg/cm² or 5,000 ppm which could trigger the Cal OSHA lead in construction standard.
Table 4 - Miscellaneous Hazardous Building Materials Survey Results

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Transformers</th>
<th>Number of Light Ballasts</th>
<th>Number of Mercury Thermometers/Switches</th>
<th>Number of A/C Units</th>
<th>No. of Fluorescent Light Tubes</th>
<th>Number of Exit Signs</th>
<th>No. of Freon Refrigerator Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Resource Center</td>
<td>2</td>
<td>700</td>
<td>20</td>
<td>2</td>
<td>1,500</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:
- PCB = Polychlorinated biphenyl
- A/C = Air Conditioning
APPENDIX A
CERTIFICATIONS
APPENDIX B

ASBESTOS ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY RECORDS
Analysis: Asbestos in Bulk Samples
Method: EPA/600/R-93/116

<table>
<thead>
<tr>
<th>RJLG Sample Number</th>
<th>Client Sample Number</th>
<th>Homogeneous</th>
<th># of Layers</th>
<th>Asbestos Detected(%)</th>
<th>Non-Asbestos Fibers(%)</th>
<th>Non-Fibrous Materials(%)</th>
<th>Matrix Material</th>
<th>Analyst - Analysis Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2709340.HPL</td>
<td>LC-ASB-01</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
<td>Q, CA, OP, G, MI, M</td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95%-wallboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%-joint compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709341.HPL</td>
<td>LC-ASB-02</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>100</td>
<td>CA, OP, G, MI, M</td>
<td></td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50%-white adhesive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50%-brown adhesive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709342.HPL</td>
<td>LC-ASB-03</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>-</td>
<td>100</td>
<td>Q, CA, OP, G, M</td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: Beige tile
<table>
<thead>
<tr>
<th>R.J.L.G Sample Number</th>
<th>Client Sample Number</th>
<th>Homogeneous</th>
<th># of Layers</th>
<th>Asbestos Detected(%)</th>
<th>Non-Asbestos Fibers(%)</th>
<th>Non-Fibrous Materials(%)</th>
<th>Matrix Material</th>
<th>Analyst - Analysis Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2709343.HPL</td>
<td>LC-ASB-04</td>
<td>Yes</td>
<td>1</td>
<td>7 CH</td>
<td>93</td>
<td>T, OP, M</td>
<td>NP-9/16/2005</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Black mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709344.HPL</td>
<td>LC-ASB-05</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>95 MW</td>
<td>5</td>
<td>B, OP, M</td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Yellow/white insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709345.HPL</td>
<td>LC-ASB-06</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>95 MW</td>
<td>5</td>
<td>B, OP, M</td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Yellow/white insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709346.HPL</td>
<td>LC-ASB-07</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>5 CE, 10 OF</td>
<td>85</td>
<td>CL, OP, M</td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Brown mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709347.HPL</td>
<td>LC-ASB-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP-9/16/2005</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>White wallboard and joint compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer Information:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%-wallboard</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
<td>Q, CA, OP, G, MI, M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%-joint compound</td>
<td>Yes</td>
<td>ND</td>
<td>100</td>
<td>CA, OP, G, MI, M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709348.HPL</td>
<td>LC-ASB-09</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>70 MW</td>
<td>30</td>
<td>B, OP, M</td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>White ceiling tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709349.HPL</td>
<td>LC-ASB-10</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>25 CE, 25 MW</td>
<td>50</td>
<td>CA, P, B, OP, M</td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Tan/white ceiling tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709350.HPL</td>
<td>LC-ASB-11</td>
<td>Yes</td>
<td>1</td>
<td>2 CH</td>
<td></td>
<td>98</td>
<td>Q, CA, OP, G, M</td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Off-white tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratory Report (cont.)

<table>
<thead>
<tr>
<th>RJLG Sample Number</th>
<th>Client Sample Number</th>
<th>Homogeneous</th>
<th># of Layers</th>
<th>Asbestos Detected(%)</th>
<th>Non-Asbestos Fibers(%)</th>
<th>Non-Fibrous Materials(%)</th>
<th>Matrix Material</th>
<th>Analyst - Analysis Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2709351.HPL</td>
<td>LC-ASB-12</td>
<td>Not Analyzed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Not Analyzed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not enough sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709352.HPL</td>
<td>LC-ASB-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>White wallboard and joint compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer Information:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%-wallboard</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
<td>Q, CA, OP, G, MI, M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%-joint compound</td>
<td>Yes</td>
<td>ND</td>
<td>100</td>
<td>CA, OP, G, MI, M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709353.HPL</td>
<td>LC-ASB-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>White wallboard and joint compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer Information:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%-wallboard</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
<td>Q, CA, OP, G, MI, M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%-joint compound</td>
<td>Yes</td>
<td><1 CH</td>
<td>100</td>
<td>CA, OP, G, MI, M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Tan/pink ceiling tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709355.HPL</td>
<td>LC-ASB-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP-9/16/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>White wallboard and joint compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer Information:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%-wallboard</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>95</td>
<td>Q, CA, B, OP, G, MI,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%-joint compound</td>
<td>Yes</td>
<td>ND</td>
<td>100</td>
<td>CA, OP, G, MI, M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RJLG Sample Number</td>
<td>Client Sample Number</td>
<td>Homogeneous</td>
<td>Asbestos Detected(%)</td>
<td>Non-Asbestos Fibers(%)</td>
<td>Non-Fibrous Materials(%)</td>
<td>Matrix Material</td>
<td>Analyst - Analysis Date</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>2709356.HPL</td>
<td>LC-ASB-17</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
<td>Q, CA, OP, G, MI, M</td>
<td>NP-9/19/2005</td>
<td></td>
</tr>
<tr>
<td>2709357.HPL</td>
<td>LC-ASB-18</td>
<td>Yes</td>
<td>ND</td>
<td>95 MW</td>
<td>5</td>
<td>B, OP, M</td>
<td>NP-9/19/2005</td>
<td></td>
</tr>
<tr>
<td>2709358.HPL</td>
<td>LC-ASB-19</td>
<td>Yes</td>
<td>1</td>
<td>10 OF</td>
<td>90</td>
<td>CA, CL, OP, G, M</td>
<td>NP-9/19/2005</td>
<td></td>
</tr>
<tr>
<td>2709359.HPL</td>
<td>LC-ASB-20</td>
<td>Yes</td>
<td>1</td>
<td>10 CE, 80 MW</td>
<td>10</td>
<td>P, B, OP, MI, M</td>
<td>NP-9/19/2005</td>
<td></td>
</tr>
<tr>
<td>2709360.HPL</td>
<td>LC-ASB-21</td>
<td>Yes</td>
<td><1 CH</td>
<td>-</td>
<td>100</td>
<td>CA, CL, OP, G, MI, M</td>
<td>NP-9/19/2005</td>
<td></td>
</tr>
<tr>
<td>2709361.HPL</td>
<td>LC-ASB-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP-9/19/2005</td>
<td></td>
</tr>
</tbody>
</table>

Description:

- **2709356.HPL**: White wallboard and joint compound
- **2709357.HPL**: Yellow/white acoustic ceiling tile
- **2709358.HPL**: Brown mastic
- **2709359.HPL**: Tan ceiling tile
- **2709360.HPL**: Brown covebase and mastic

Layer Information:

<table>
<thead>
<tr>
<th>Layer Information</th>
<th>Homogeneous</th>
<th>Asbestos Detected(%)</th>
<th>Non-Asbestos Fibers(%)</th>
<th>Non-Fibrous Materials(%)</th>
<th>Matrix Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%-covebase</td>
<td>Yes</td>
<td>ND</td>
<td>100</td>
<td>CA, OP, G, M</td>
<td></td>
</tr>
<tr>
<td>5%-mastic</td>
<td>Yes</td>
<td>ND</td>
<td>5 CE, 10 OF</td>
<td>85</td>
<td>CA, CL, OP, G, MI, M</td>
</tr>
<tr>
<td>RJLG Sample Number</td>
<td>Client Sample Number</td>
<td>Homogeneous</td>
<td># of Layers</td>
<td>Asbestos Detected(%)</td>
<td>Non-Asbestos Fibers(%)</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>2709362.HPL</td>
<td>LC-ASB-23</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
</tr>
<tr>
<td>2709363.HPL</td>
<td>LC-ASB-24</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
</tr>
<tr>
<td>2709364.HPL</td>
<td>LC-ASB-25</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
</tr>
<tr>
<td>2709365.HPL</td>
<td>LC-ASB-26</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
</tr>
<tr>
<td>2709366.HPL</td>
<td>LC-ASB-27</td>
<td>Yes</td>
<td>1</td>
<td><1 CH</td>
<td>3 CE</td>
</tr>
</tbody>
</table>

Description:

- **White wallboard and joint compound**
- **Layer Information:**
 - 95%-wallboard: Yes, ND, 10 CE, 90, Q, CA, OP, G, MI, M
 - 5%-joint compound: Yes, <1 CH
- **White wallboard/plaster and white/brown joint compound**
- **Layer Information:**
 - 95%-wallboard/plaster: Yes, ND, 10 CE, 90, Q, CA, OP, G, MI, M
 - 5%-joint compound: Yes, <1 CH
- **White plaster/wallboard and white/brown joint compound**
- **Layer Information:**
 - 95%-plaster/wallboard: Yes, ND, 10 CE, 90, Q, CA, OP, G, MI, M
 - 5%-joint compound: Yes, <1 CH
- **White plaster/wallboard and white/brown joint compland**
- **Layer Information:**
 - 95%-plaster/wallboard: Yes, ND, 10 CE, 90, Q, CA, OP, G, MI, M
 - 5%-joint compound: Yes, <1 CH
- **White joint compound only**
<table>
<thead>
<tr>
<th>RJLG Sample Number</th>
<th>Client Sample Number</th>
<th>Homogeneous</th>
<th># of Layers</th>
<th>Asbestos Detected(%)</th>
<th>Non-Asbestos Fibers(%)</th>
<th>Non-Fibrous Materials(%)</th>
<th>Matrix Material</th>
<th>Analyst - Analysis Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2709367.HPL</td>
<td>LC-ASB-28</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
<td>Q, CA, OP, G, MI, M</td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>White plaster/wallboard only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709368.HPL</td>
<td>LC-ASB-29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>White plaster/wallboard and white/brown joint compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer Information:</td>
<td>95%-plaster/wallboard</td>
<td>Yes</td>
<td>ND</td>
<td>10 CE</td>
<td>90</td>
<td>Q, CA, OP, G, MI, M</td>
<td></td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td>5%-joint compound</td>
<td>Yes</td>
<td><1 CH</td>
<td></td>
<td></td>
<td>100</td>
<td>CA, OP, G, MI, M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Black roofing material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709370.HPL</td>
<td>LC-ASB-31</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>20 CE, 25 FG</td>
<td>55</td>
<td>T, B, OP, M</td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Black roofing material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Black roofing material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709372.HPL</td>
<td>LC-ASB-33</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>15 CE</td>
<td>85</td>
<td>T, CA, OP, G, M</td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Black roof mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709373.HPL</td>
<td>LC-ASB-34</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>15 CE</td>
<td>85</td>
<td>T, CA, OP, G, M</td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>Black roofing tar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2709374.HPL</td>
<td>LC-ASB-35</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>40 CE</td>
<td>60</td>
<td>CA, OP, G, M</td>
<td>NP-9/19/2005</td>
</tr>
<tr>
<td>Description:</td>
<td>White duct wrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RJLG Sample Number</td>
<td>Client Sample Number</td>
<td>Homogeneous</td>
<td>Layers</td>
<td>Asbestos Detected(%)</td>
<td>Non-Asbestos Fibers(%)</td>
<td>Non-Fibrous Materials(%)</td>
<td>Matrix Material</td>
<td>Analyst - Analysis Date</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2709375.HPL</td>
<td>LC-ASB-36</td>
<td>Yes</td>
<td>1</td>
<td>ND</td>
<td>30 CE, 25 MW</td>
<td>45</td>
<td>CA, B, OP, G, M</td>
<td>NP-9/19/2005</td>
</tr>
</tbody>
</table>

Description: Tan ceiling tile
ASBESTOS

AM = Amosite
AC = Actinolite
AN = Anthophyllite
CH = Chrysotile
CR = Crocidolite
TR = Tremolite

NON-ASBESTOS

CE = Cellulose
MW = Mineral Wool
FG = Fibrous Glass
SF = Synthetic Fibers
H = Hair
W = Wollastonite
OF = Other Fibers

NON-FIBROUS MATERIALS

AM = Amphibole
B = Binder
CA = Carbonates
CL = Clay
F = Feldspar
G = Gypsum
HY = Hydromagnesite
M = Miscellaneous
MI = Mica
OP = Opaque
OR = Organic
P = Perlite
Q = Quartz
T = Tar
V = Vermiculite

DISCLAIMER NOTES

- "ND" indicates no asbestos was detected; the method detection limit is 1%.
- "Trace" or "<1" indicates asbestos was identified in the sample, but the concentration is less than the method quantitation limit of 1%.
- PLM coefficients of variance range from approximately 1.8 at the quantitation limit of 1% to 0.1 at high fiber concentrations.
- Samples are archived for three months following analysis and are then properly discarded.
- These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions.
- No responsibility or liability is assumed for the manner in which these results are used or interpreted.
- This test report relates to the items tested.
- This report is not valid unless it bears the name of a NVLAP-approved signatory.
- Any reproduction of this document must be in full in order for the report to be valid.
- This report may not be used to claim product endorsement by NVLAP, any agency of the U.S. Government or any other laboratory accrediting agency.
- Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as "non-asbestos-containing."
- Sample(s) for this project were analyzed at our San Leandro, CA (NVLAP #101208-2) facility.
- IF RJ Lee Group, Inc. did not collect the samples analyzed, the verifiability of the laboratory's results are limited to the reported values.
Laboratory Report

Analysis: Asbestos in Bulk Samples
Method: EPA/600/R-93/116

<table>
<thead>
<tr>
<th>RJLG Sample Number</th>
<th>Client Sample Number</th>
<th>Homogeneous</th>
<th># of Layers</th>
<th>Asbestos Detected(%)</th>
<th>Non-Asbestos Fibers(%)</th>
<th>Non-Fibrous Materials(%)</th>
<th>Matrix Material</th>
<th>Analyst - Analysis Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2717413.HPL</td>
<td>LC-ASB-37</td>
<td>Yes</td>
<td>1</td>
<td>5 CH</td>
<td>10 FG</td>
<td>85</td>
<td>CA, B, OP, G, M</td>
<td>YZ-11/1/2005</td>
</tr>
</tbody>
</table>

Description: Black mastic
<table>
<thead>
<tr>
<th>ASBESTOS</th>
<th>NON-ASBESTOS</th>
<th>NON-FIBROUS MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM = Asbestos</td>
<td>CE = Cellulose</td>
<td>AM = Amphibole</td>
</tr>
<tr>
<td>AC = Actinolite</td>
<td>MW = Mineral Wool</td>
<td>HY = Hydromagnesite</td>
</tr>
<tr>
<td>AN = Anthophyllite</td>
<td>FG = Fibrous Glass</td>
<td>Q = Quartz</td>
</tr>
<tr>
<td>CH = Chrysotile</td>
<td>SF = Synthetic Fibers</td>
<td>B = Binder</td>
</tr>
<tr>
<td>CR = Crocidolite</td>
<td>H = Hair</td>
<td>M = Miscellaneous</td>
</tr>
<tr>
<td>TR = Tremolite</td>
<td>W = Wollastonite</td>
<td>CA = Carbonates</td>
</tr>
<tr>
<td>OF = Other Fibers</td>
<td></td>
<td>CL = Clay</td>
</tr>
</tbody>
</table>

DISCLAIMER NOTES

* "ND" indicates no asbestos was detected; the method detection limit is 1%.
* "Trace" or "<1" indicates asbestos was identified in the sample, but the concentration is less than the method quantitation limit of 1%.

PLM coefficients of variance range from approximately 1.8 at the quantitation limit of 1% to 0.1 at high fiber concentrations.

* Samples are archived for three months following analysis and are then properly discarded.
* These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions.
* No responsibility or liability is assumed for the manner in which these results are used or interpreted.
* This test report relates to the items tested.
* This report is not valid unless it bears the name of a NVLAP-approved signatory.
* Any reproduction of this document must be in full order for the report to be valid.
* This report may not be used to claim product endorsement by NVLAP, any agency of the U.S. Government or any other laboratory accrediting agency.
* Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar nonfibrous organically bound materials. Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as "non-asbestos-containing."
* Sample(s) for this project were analyzed at our San Leandro, CA (NVLAP #101208-2) facility.
* If RJ Lee Group, Inc. did not collect the samples analyzed, the verifiability of the laboratory's results are limited to the reported values.
<table>
<thead>
<tr>
<th>LabID</th>
<th>Sample ID</th>
<th>Building Number</th>
<th>Sample Location</th>
<th>Sample Description</th>
<th>Quantity (SF/LF/EA)</th>
<th>Fiable (Y/N)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-ASB-01</td>
<td>LC</td>
<td>Rm 65</td>
<td></td>
<td>wallboard/joint compound</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-02</td>
<td>LC</td>
<td>Rm 65</td>
<td></td>
<td>baseboard mastic</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-03</td>
<td>LC</td>
<td>Rm 69</td>
<td></td>
<td>12x12 Beige VFT w/ Brown Flecks</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-04</td>
<td>LC</td>
<td>Rm 69</td>
<td></td>
<td>mastic assoc w/ LC-ASB-03</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-05</td>
<td>LC</td>
<td>Rm 69</td>
<td></td>
<td>2x4 Lay-in ACT</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-06</td>
<td>LC</td>
<td>Rm 54</td>
<td></td>
<td>12x12 white ACT</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-07</td>
<td>LC</td>
<td>Rm 54</td>
<td></td>
<td>mastic Assoc w/ LC-ASB-06</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-08</td>
<td>LC</td>
<td>Rm 54</td>
<td></td>
<td>wallboard/joint compound</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LE-ASB-09</td>
<td>LC</td>
<td>Rm 52</td>
<td></td>
<td>12x12 white ACT w/ random</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-10</td>
<td>LC</td>
<td>Rm 32</td>
<td></td>
<td>2x4 nonfram ACT lay-in</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-11</td>
<td>LC</td>
<td>Rm 33</td>
<td></td>
<td>9x9 VFT beige w/ known flecks</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-12</td>
<td>LC</td>
<td>Rm 33</td>
<td></td>
<td>mastic assoc w/ ASB-11</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
</tbody>
</table>
Asbestos Bulk Sample Data Sheet

Ninoy & Moore

1956 Webster Street, #400
Oakland, CA 94612
Tel: (510) 633-5640
Fax: (510) 633-5646

Project Name: College of Marin/LC
Project No.: 401135001
Project Manager: WPL
APN:
Site Address:

Sampled By: WPL
Sampled By:
Date Sampled: 9/1/05

Chain of Custody Information:

<table>
<thead>
<tr>
<th>Receiving By/Date</th>
<th>Receiving By/Date</th>
<th>Receiving By/Date</th>
<th>Receiving By/Date</th>
<th>Receiving By/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninoy & Moore</td>
<td>9/1/05</td>
<td>1/1/05</td>
<td>2/1/05</td>
<td>4/1/05</td>
</tr>
</tbody>
</table>

Laboratory

RJ Lee

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Building Number</th>
<th>Sample Location</th>
<th>Sample Description</th>
<th>Quantity (SF/LF/EA)</th>
<th>Friable (Y/N)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-ASB-25</td>
<td>LC</td>
<td>Rm 111</td>
<td></td>
<td>plaster/wallboard</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-26</td>
<td>LC</td>
<td>Rm 136</td>
<td></td>
<td>plaster/wallboard</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-27</td>
<td>LC</td>
<td>Rm 136</td>
<td></td>
<td>plaster/wallboard</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-28</td>
<td>LC</td>
<td>Rm 136</td>
<td></td>
<td>plaster/wallboard</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-29</td>
<td>LC</td>
<td>Rm 100</td>
<td></td>
<td>wallboard/joint compound</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-30</td>
<td>LC</td>
<td>Roof/South</td>
<td></td>
<td>roof assembly</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-31</td>
<td>LC</td>
<td>Roof/North</td>
<td></td>
<td>roof assembly</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-32</td>
<td>LC</td>
<td>Roof/Central/Raised</td>
<td></td>
<td>roof assembly</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-33</td>
<td>LC</td>
<td>Roof/East</td>
<td></td>
<td>roof mastic</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-34</td>
<td>LC</td>
<td>Roof/West</td>
<td></td>
<td>roof mastic</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-35</td>
<td>LC</td>
<td>Roof/West</td>
<td></td>
<td>HVAC duct vibration</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
<tr>
<td>LC-ASB-36</td>
<td>LC</td>
<td>Rm 130</td>
<td></td>
<td>2x4 ACT w/ pin holes</td>
<td></td>
<td>N</td>
<td>good</td>
</tr>
</tbody>
</table>

Attestation Signature:*

Attestation Stamp
<table>
<thead>
<tr>
<th>LabID</th>
<th>Sample ID</th>
<th>Building Number</th>
<th>Sample Location</th>
<th>Sample Description</th>
<th>Quantity (SF/LF/EA)</th>
<th>Friable (Y/N)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LE-ASB-37</td>
<td>LC</td>
<td>Exterior/Northwest Side</td>
<td>Foundation/Wall Covering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

PREVIOUS ASBESTOS ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY RECORDS
BULK ASBESTOS ANALYSIS RESULTS

Asbestos Fibers

Chrysotile 6%

Non-Asbestos Fibers

Mineral Wool 35%

Non-Fibrous Components

Calcite 65%
Misc. Minerals 10% 16%
Hydromagnesite 55% 14%
Mica/Vermiculite

Sample Descriptions

Sample # LRC-1-7-21-98 Off-white, homogeneous, fibrous, massive, granular thermal steam insulation.

Sample # LRC-2-7-21-98 Off-white, homogeneous, massive, granular, asbestos-containing drywall mud/joint compound, fibrous, with sheetrock.

Laboratory accreditation or any of its test reports in no way constitutes or implies product certification, approval, or endorsement by the National Institute of Standards and Technology (NIST). NIST is accredited by NIST (NVLAP 1259).

Please see reverse side for explanation of Terms and Analytical Results and sample deposition.

Analysis Performed By: (Signature) Date: 7/22/98
Reviewed By: (Signature) Date: 7/23/98
<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>SAMPLE LOCATION</th>
<th>MATERIAL DESCRIPTION</th>
<th>DATE COLLECTED</th>
<th>SAMPLE TYPE</th>
<th>LAB NUMBER</th>
<th>SAMPLE CONDITION ON RECEIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRC-1-7-21-98</td>
<td>Above ceiling LRC II</td>
<td>Baseballs/gad mudded joint with cloth cover</td>
<td>7-21-98</td>
<td>AC T M R S</td>
<td>98/1210</td>
<td></td>
</tr>
<tr>
<td>LRC-2-7-21-98</td>
<td>Sheetrock joint/ceiling approx 1" x 2" sheetrock with tape joint & mud</td>
<td>7-21-98</td>
<td>AC T M R S</td>
<td>98/121</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC = Acoustical Ceiling T = Tile TM = Title/Mastic R = Roofing S = Soil

Relinquished by (signature)
Affiliation
Received by (signature)
Affiliation
DATE 7/21/98
TIME

Relinquished by (signature)
Affiliation
Received by (signature)
Affiliation
DATE
TIME

Courier (signature)
Received for Laboratory (signature)
DATE
TIME

1516 GRANT AVENUE, SUITE 228 * NOVATO, CALIFORNIA 94945 * 415-892-9016 * 415-892-6390 (FAX)
CLIENT

Mr. Robert Thompson
Marin Community College
Business Office
Kentfield, CA 94904

DATE ANALYZED: 3/5/97
DATE REPORTED: 3/5/97
CLIENT PROJECT NO: N/A
GPI PROJECT NO: 96168-7
ANALYSIS: Bulk Asbestos Analysis (PLM)
SAMPLE TYPES: Pipe Insulation
GPI LAB NO: 971067

PROJECT: Streamlining Resources

BULK ASBESTOS ANALYSIS RESULTS

Non-Asbestos Fibers

Mineral Wool 45%

Non-Fibrous Components
Calcite 45%
Misc. Minerals 10%

Sample Description
Sample # 1
Grayish, homogeneous, massive, fibrous insulation, with whitish cloth outer covering.

Laboratory accreditation or any of its test reports in no way constitutes or implies product certification, approval, endorsement by the National Institute of Standards and Technology, GPI is accredited by NIST (NVLAP 12269)

Please see reverse side for explanation of Terms and Analytical Results and sample deposition

Analysis Performed By: [Signature] Date: 3/5/97
Reviewed By: [Signature] Date: 3/5/97
BULK SAMPLE LOG AND LABORATORY REQUEST FOR ANALYSIS

Client Name: Mr. Robert Thompson
Company: Marin Community College District
Address: 140 Kent Avenue
City/State: Kentfield, CA
Zip: 94904
Phone (Business): 415-485-9450
Phone (Fax): 415-454-3248 (Home) 707-762-0901

Sample Location: Pipe Insulation
Sample Description: 3/4 to 1/2 in. Tee

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Location</th>
<th>Material Description</th>
<th>Date Collected</th>
<th>Sample Type</th>
<th>Laboratory Number</th>
<th>Sample Condition On Receipt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2C 94</td>
<td>Pipe Insulation</td>
<td>7/6/07</td>
<td>ACT TM RS</td>
<td>971097</td>
<td></td>
</tr>
</tbody>
</table>

Acronyms:
AC = Acoustical Ceiling
T = Tile
TM = Tile/Mastic
R = Roofing
S = Soil

Requisitioned by (signature): [Signature]
Affiliation:
Received by (signature): [Signature]
Affiliation:
Requisitioned by (signature): [Signature]
Affiliation:
Courier (signature): [Signature]
Received for Laboratory (signature): [Signature]

GEOLOGICAL + ENVIRONMENTAL CONSULTATION AND LABORATORY SERVICES
1516 GRANT AVENUE, SUITE 226 • NOVATO, CALIFORNIA 94945 • 415-892-9016 • 415-392-6390 (FAX)
BULK ASBESTOS ANALYSIS RESULTS

Asbestos Fibers

Non-Asbestos Fibers

Mineral Wool 45%

Non-Fibrous Components

Calcite 15%
Diatomaceous Earth 25%
Misc. Minerals 5%
Binding Material 10%

Sample Descriptions

Sample #1 Yellowish-brown, homogenous, loose, massive, fibrous, friable

Laboratory accreditation or any of its test reports in no way constitutes or implies product certification, approval, endorsement by the National Institute of Standards and Technology. GPI is accredited by NIST (NVLAP Code 1269)

Please see reverse side for explanation of Terms and Analytical Results and sample deposition

Analysis Performed By: Date: 11/24/92
Reviewed By: Date: 11/24/92
<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:20</td>
<td>12/4/20</td>
</tr>
</tbody>
</table>
Bulk Sample Log and Laboratory Request for Analysis

Client Name: Mr. Robert Thompson
Company: Marin Community College District
Address: 140 Kent Avenue, Kentfield, CA
Zip: 94904
Phone: 415-485-9450
Fax: 415-454-3248
Home Phone: 707-766-0901

Project Name/Location: [Sample Location]
Date Collected: 9/10/83
Report To/Contact Person: Mr. Robert Thompson

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Location</th>
<th>Material Description</th>
<th>Date Collected</th>
<th>Sample Type</th>
<th>Laboratory Number</th>
<th>Sample Condition on Receipt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Learning Center Rm 100</td>
<td>Sweet Rock & Taping Hud</td>
<td>9/10/83</td>
<td>AC T TM R S</td>
<td>931724</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC T TM R S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC T TM R S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC T TM R S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC T TM R S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC T TM R S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC T TM R S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requisitioned by (Signature):
Received by (Signature):
Affiliations:
Rejected by (Signature):
Received for Laboratory (Signature):

GEOLOGICAL + ENVIRONMENTAL CONSULTATION AND LABORATORY SERVICES
1516 Grant Avenue, Suite 228 • Novato, California 94945 • 415-892-9016 • 415-892-6390 (FAX)
CLIENT

Mr. Robert Thompson
Marin Community College
Business Office
Kentfield, CA

DATE ANALYZED: 9/14/93
DATE REPORTED: 9/14/93

CLIENT PROJECT NO: 76673
GPI PROJECT NO: 93296-1

ANALYSIS: Bulk Asbestos Analysis (PLM)
SAMPLE TYPES: Sheetrock & Taping Mud

GPI LAB NO.: 931726
PROJECT:

BULK ASBESTOS ANALYSIS RESULTS

GPI LAB NO
FIELD NO. G931726 1

Asbestos Fibers

Non-Asbestos Fibers

Non-Fibrous Components

Calcite 80%
Misc. Minerals 5%
Mica/Vermiculite 15%

Sample Descriptions
Sample #1 White, homogeneous, massive, friable drywall mud with pale yellowish paint coating, and with drywall board backing.

Laboratory accreditation or any of its test reports in no way constitutes or implies product certification, approval, endorsement by the National Institute of Standards and Technology. GPI is accredited by NIST (NVLAP 1269)

Please see reverse side for explanation of Terms and Analytical Results and sample deposition

Analysis Performed By: ______________________________ Date: 9/14/93
Reviewed By: ______________________________ Date: 9/14/93
APPENDIX D

LEAD-BASED PAINT ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY RECORDS
LABORATORY REPORT

RECEIVED

SEP 19 2005

NINYO AND MOORE OAKLAND OFFICE

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>RJ Lee Group ID</th>
<th>Sampling Date</th>
<th>Analyte</th>
<th>Concentration Weight Percent</th>
<th>Concentration Parts per Million (PPM)</th>
<th>Reporting Limit Weight Percent</th>
<th>Reporting Limit Parts per Million (PPM)</th>
<th>Analysis Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-LBP-01</td>
<td>CA130920050010-001</td>
<td>09/01/2005</td>
<td>Lead</td>
<td>< 0.0185</td>
<td>< 185</td>
<td>0.0185</td>
<td>185</td>
<td>09/14/2005</td>
</tr>
<tr>
<td>LC-LBP-02</td>
<td>CA130920050010-002</td>
<td>09/01/2005</td>
<td>Lead</td>
<td>< 0.0336</td>
<td>< 336</td>
<td>0.0336</td>
<td>336</td>
<td>09/14/2005</td>
</tr>
<tr>
<td>LC-LBP-03</td>
<td>CA130920050010-003</td>
<td>09/01/2005</td>
<td>Lead</td>
<td>< 0.0053</td>
<td>< 55.3</td>
<td>0.0053</td>
<td>55.3</td>
<td>09/14/2005</td>
</tr>
<tr>
<td>LC-LBP-04</td>
<td>CA130920050010-004</td>
<td>09/01/2005</td>
<td>Lead</td>
<td>< 0.0211</td>
<td>< 211</td>
<td>0.0211</td>
<td>211</td>
<td>09/14/2005</td>
</tr>
<tr>
<td>LC-LBP-05</td>
<td>CA130920050010-005</td>
<td>09/01/2005</td>
<td>Lead</td>
<td>< 0.0330</td>
<td>< 330</td>
<td>0.0330</td>
<td>330</td>
<td>09/14/2005</td>
</tr>
</tbody>
</table>

Analyst Comments:

E = Value above quantitation range

B = Analyte detected in the associated Method Blank

f = Analyte detected below quantitation limits

S = Spike Recovery outside accepted recovery limits.

N = Analyte not NELAC certified

R = RPD (relative percent difference) outside accepted recovery limits

These results are submitted pursuant to RJ Lee Group’s current terms and conditions of sale, including the company’s standard warranty and limitation of liability provisions. No responsibility or liability is assumed for the manner in which the results are used or interpreted.

Unless notified in writing to return the samples covered by this report, RJ Lee Group will store the samples for a period of thirty (30) days before discarding. A shipping and handling fee will be assessed for the return of any samples.

This laboratory operates in accord with ISO 17025 guidelines, and holds limited scope of accreditation under AIHA Lab ID 100364, NY ELAP Lab Code 20884, EPA Lab Code PA00162, CA ELAP Certificate 1930, PA DEP Lab ID 02-00396, VA DCLS Lab ID 00297, and LA DEQ Agency Interest 94775. This report may not be used to claim product endorsement by any laboratory accrediting agency. The results contained in this report relate only to the items tested or to the sample(s) as received by the laboratory. Any reproduction of this document must be in full for the report to be valid.

Quality Control data is available upon request.

Authorized Signature: [Signature]

[Stamp]

Ninayo & Moore

1956 Webster Street, Suite 400

Oakland, CA 94612

Attn: William Larkin

Phone: (510) 633-5640

Fax: (510) 633-5646

Email: none

RJ Lee Group Job No.: CA130920050010

Samples Received: September 19, 2005

Report Date: September 14, 2005

Client Project: College of Marin/LC

Purchase Order No.: 401135001

Matrix: Solid

Prep/Analysis: EPA 3050B/EPA 7420 (Solids)-PA

350 Hochberg Road

Monroeville, PA 15146

Phone: (724) 325-1776

Fax: (724) 733-1799
LEAD BASED PAINT BULK SAMPLE DATA SHEET

Ninyo & Moore
1956 Webster Street, Suite 400
Oakland, CA 94612
510-633-5640
510-633-5646 (fax)

Project Name: College of Marin/LC
Project No.: 401/3500
Project Manager: WPC
Site Address: Learning Resource Center

Sampled By: WPC
Sampled By:
Date Sampled: 9/1/05

Laboratory: RJ Lee, Inc.
Tel: 567-0480

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Building Number</th>
<th>Sample Location</th>
<th>Building Component</th>
<th>Sample Description (Color / Layers / Substrate)</th>
<th>Estimated Surface Area</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>LC-LBP-01</td>
<td>LC</td>
<td>Rm 74</td>
<td>Wall</td>
<td>Off-white / 1/2 in.</td>
<td></td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>LC-LBP-02</td>
<td>LC</td>
<td>Rm 111</td>
<td>Wall</td>
<td>Orange / 1/2 plaster</td>
<td></td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>LC-LBP-03</td>
<td>LC</td>
<td>Roof</td>
<td>Duct</td>
<td>Gray / 2 / metal</td>
<td></td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>LC-LBP-04</td>
<td>LC</td>
<td>Rm 4.5</td>
<td>Beam</td>
<td>White / 1 / concrete</td>
<td></td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>LC-LBP-05</td>
<td>LC</td>
<td>Rm 54</td>
<td>Wall</td>
<td>Cream / 1 / wallboard</td>
<td></td>
<td>Intact</td>
</tr>
</tbody>
</table>
APPENDIX E
PHOTOGRAPHS
Photograph No. 1: View of the main entrance to the Learning Resources Center.

Photograph No. 2: View of the library located on the second floor of the Learning Resources Building.
Photograph No. 3: View of a classroom in located on the first floor of the building.

Photograph No. 4: View of the reprographics department, Room 71, located on the first floor of the Learning Resources Center.
Photograph No. 5: View of fume hoods located in the reprographics department, Room 71.

Photograph No. 6: View of inks storage in the reprographics department, Room 71.
Photograph No. 7: View of the photo developing lab, Room 63. Note the fume hood.

Photograph No. 8: View of the stained floor in the photo developing lab, Room 63.
Photograph No. 9: View of hazardous materials stored in the photo developing lab, Room 63.

Photograph No. 10: View of fixer and developer waste stored in the photo developing lab, Room 63.
Photograph No. 11: View of hazardous materials stored in the photo developing lab, Room 63.

Photograph No. 12: View of expired developer stored in the photo developing lab, Room 63. Note the spillage of the material on the bottom of the box.
APPENDIX F

HISTORIC ENVIRONMENTAL DOCUMENTATION
HAZARDOUS WASTE GENERATOR INSPECTION

Facility Name: Marin Community College - Kentfield
Facility Address: 835 College Ave
City: Kentfield
Contact Person: Mary Vidal
Title: Health & Safety
EPA I.D. #: CA-00003017
Phone: 415-495-9667

SUMMARY OF VIOLATIONS

1. Yes □ No □ N/A □ Hazardous Waste Determination. CCR 66262.11 requires that a person who generates a waste must determine if that waste is a hazardous waste using specific listed methodologies.

2. No □ Yes □ N/A □ Generator has EPA I.D. Number. CCR 66262.12(a) requires that a generator shall not treat, store, dispose of, transport or offer for transport a hazardous waste without having received an identification number.

3. No □ Yes □ N/A □ Authorized waste storage area. HSC 25201(a) requires that no owner or operator of a storage, treatment, transfer, resource recovery or disposal facility shall accept, treat, store or dispose of a hazardous waste at a facility unless the owner or operator holds a hazardous waste facilities permit or other grant of authorization from the State.

4. Yes □ No □ N/A □ Hazardous waste release prevention. CCR 66265.31 requires that a facility be maintained and operated to minimize the possibility of a fire, explosion, or any unplanned sudden or non-sudden release of a hazardous waste or constituents.

5. No □ Yes □ N/A □ Establish communication/safety devices for HW. CCR 66265.32 requires all facilities to be equipped with an internal communication or alarm system; a device capable of summoning emergency assistance; fire control equipment and adequate water pressure and volume.

6. No □ Yes □ N/A □ HW containers properly labeled. CCR 66262.34(f)(3) requires generators who accumulate hazardous waste on-site to label each container with the words "Hazardous Waste", composition and physical state of the waste, statement(s) regarding the properties of the waste and the name and address of the person producing the wastes.

7. No □ Yes □ N/A □ HW accumulation time is not exceeded for containers/tanks. CCR 66262.34 states that a generator may accumulate hazardous waste on-site for a specified period of time, this time being dependent on the maximum volume of waste produced during a month.

8. No □ Yes □ N/A □ Containers are in good condition and aren't leaking. CCR 66265.171 requires that if a container holding hazardous waste is not in good condition, the owner or operator shall transfer the waste to a container that is in good condition or manage the waste in another way to comply with requirements.

9. No □ Yes □ N/A □ Containers are compatible with the HW. CCR 66265.172 requires the owner or operator to use a container made of, or lined with, materials which will not react with the materials stored in the container.

10. No □ Yes □ N/A □ Containers closed, lids are secured. CCR 66265.173(a) requires that a container holding a hazardous waste be closed during transfer and storage except when it is necessary to add or remove waste.

11. Yes □ No □ N/A □ Conduct weekly inspections of all container storage areas. CCR 66265.174 requires the owner or operator to inspect areas used for container storage or transfer, at least weekly.

12. No □ Yes □ N/A □ Ignitable/reactive waste is not located within 15 meters of property line. CCR 66265.176 requires that containers holding ignitable or reactive waste shall be located at least 15 meters (50 feet) from the facility's property line.

13. No □ Yes □ N/A □ No leaking or Unfit tanks. CCR 66265.191(a) requires that for each existing tank system that does not have secondary containment, as stipulated, the owner or operator shall determine that the tank system is not leaking or is unfit for use.

Recipient Signature: [Signature]
Page 1 of 3
Secondary containment provided for aboveground tanks. CCR 66265.193 requires that secondary containment be provided for all new tank systems or components.

Daily inspections of aboveground tanks conducted. CCR 66265.195(a) requires the owner or operator of a tank containing hazardous waste to inspect the tank at least once daily.

No other wastes/materials are mixed with used oil. HSC 25250.7 states that no person who generates, stores or transfers used oil shall intentionally contaminate used oil with other hazardous waste, than minimal amounts of vehicle fuel.

Proper management of lead acid batteries including labels. CCR 66265.81 requires proper management of lead acid storage batteries including proper labeling.

Proper management of used oil filters. CCR 66266.130 requires that oil filters be managed as a hazardous waste unless specific conditions are met, including the filters are drained of free-flowing oil, properly disposed of, and properly labeled.

Transported HW with complete manifest. CCR 66262.20(a) requires a generator, who transports, or offers for transportation, hazardous waste for off-site transfer, treatment, storage or disposal shall prepare a manifest according to instructions provided.

Sent manifest to DTSC. CCR 66262.23(a)(4) requires the generator to submit a copy of each manifest used to the Department of Toxic Substance Control within 30 days of each shipment of a hazardous waste.

Retain manifest for 3 years. CCR 66262.40(a) requires that a generator shall keep a copy of each manifest signed for three years or until the generator receives a signed copy from the designated facility which received the hazardous waste. This signed copy shall be retained as a record for at least three years from the date the waste was accepted by the initial transporter.

Retain HW analysis for 3 years. CCR 66262.40(c) requires the generator to keep records of any test results, waste analyses, or other determinations made about the waste for at least three years from the date that the waste was last sent to on-site or off-site TSD facility.

Consolidated Manifesting. H&SC 25160.2. Generator shall keep records for at least three years and enter into an agreement with transporter that transporter will provide a confirmation to generator that waste is being transported to an authorized treatment facility.

Retain manifest/bill of lading for spent acid batt. for 3 years. CCR 66266.81(4)(B) requires the generator to retain at the generator's place of business for at least three years, a legible copy of each manifest or bill of lading which identifies the spent lead-acid batteries shipped.

Retain copies of used oil receipts for 3 years. HSC 25250.8(b)(3) states that the generator shall retain each receipt for used oil for at least three years.

Retain bill of lading for used oil filters for 3 years. CCR 66266.130(c)(5) states that a copy of each bill of lading must be kept on the premises of the generator, transporter, and receiving facility where the used oil filters are handled. Copies of bills of lading shall be kept for a period of three years.

Determine if waste is restricted from land disposal. CCR 66268.7(a) states that if a generator's waste is listed in Article 4 of Chapter 11; the generator shall test the waste to determine if the waste is restricted from land disposal.

Notify for Land Disposal Restriction (LDR) Waste. CCR 66268.7(a)(1) states that if a generator determines that a restricted waste is being handled, and the waste does not meet applicable treatment standards, as established, with each shipment of waste, the generator shall notify the treatment or storage facility in writing of the appropriate treatment standards.

Retain notifications/certifications records/LDR. CCR 66268.7(a)(6) states that if the generator determines that a waste is being managed that is excluded from the definition of waste or hazardous waste or is exempt from the requirements of this division from the point of generation, the generator shall place a one-time notice in the facility's file stating the reason for the exclusion.

Recipient Signature: [Signature]
<table>
<thead>
<tr>
<th>No.</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Submit notification of intent to export, etc. CCR 66262.52 states that exports of hazardous waste to a foreign country from the State is prohibited unless certain requirements are met, including notification requirements; and the receiving country has agreed to accept the waste.</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>Retain waste analysis/test records for 3 years. CCR 66262.40(c) states that a generator shall keep the records of any test results, waste analyses, or any other determinations made in accordance with 66262.11 for at least three years from the date that the waste was last sent to on-site or off-site treatment, storage or disposal (TSD) facility.</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>Retain biennial report/exception report for 3 years. (This applies only to large quantity RCRA generators.) CCR 66262.40(b) states that a generator shall keep a copy of each Biennial Report and Exception Report for a period of at least three years from the date of the report.</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>Submit written report to DTSC within 15 days of incidents requiring activation of the contingency plan. CCR 66265.56(j) & 66265.77(a) CCR 66265.56(j) requires the owner or operator to note in the operating record the time, date and details of any incident that requires implementing the contingency plan. Within 15 days after the incident, the owner or operator shall submit a written report on the incident to the Department. CCR 66265.77(a) states that in addition to submitting the annual report, the owner or operator shall also report to the Department releases, fires and explosions.</td>
</tr>
<tr>
<td>34</td>
<td>✔</td>
<td></td>
<td></td>
<td>Contingency plan. CCR 66265.51(a) states that each owner or operator shall have a contingency plan for the facility, which is designed to minimize hazards to human health or the environment from fires, explosions or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil or surface water.</td>
</tr>
<tr>
<td>35</td>
<td>✔</td>
<td></td>
<td></td>
<td>Contingency plan complete. CCR 66265.52(a) states that the contingency plan shall describe the action facility personnel shall take to comply with specified requirements in response to fire, explosions or any unplanned sudden or non-sudden release of hazardous waste.</td>
</tr>
<tr>
<td>36</td>
<td>✔</td>
<td></td>
<td></td>
<td>Personnel completed training courses. CCR 66265.16(a)(1) requires that facility personnel successfully complete a program of classroom instruction or on-the-job training that teaches them to perform their duties in a way that ensures the facility's compliance with hazardous waste regulations.</td>
</tr>
<tr>
<td>37</td>
<td>✔</td>
<td></td>
<td></td>
<td>Personnel receive annual training review. CCR 66265.16(c) requires that facility personnel take part in an annual review of the initial training required.</td>
</tr>
<tr>
<td>38</td>
<td>✔</td>
<td></td>
<td></td>
<td>Prepared and retained source reduction documents. HSC 25244.19-21</td>
</tr>
<tr>
<td>39</td>
<td>✔</td>
<td></td>
<td></td>
<td>Universal Waste. CCR 66261.9. Standards for universal waste are being met.</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>Appliance Recycling HSC 25212 (c) Special handling requirements are being met.</td>
</tr>
</tbody>
</table>

OBSERVATIONS: ALL VIOLATIONS ARE TO BE CORRECTED WITHIN 30 DAYS, UNLESS OTHERWISE MENTIONED

Everyone - Use screw pick up; Waste oil, waste antifreeze, solvent, pick up solvents I used drain oil filters. Photo processing wash container inside darkroom to have cap on sport, net age to spilling.

Recipient Signature: [Signature]

Inspector Signature: [Signature]
HAZARDOUS WASTE GENERATOR INSPECTION

Facility Name: Marin County, Calif. - Kentfield
Facility Address: 375 College Ave
Contact Person: Mary L. Soder
EPA I.D. #: CA000517388704

Inspection Date: 5/27/03
City: Kentfield
Title: Health & Safety Coordinator
Phone: 415-499-9647 (495-7)

SUMMARY OF VIOLATIONS

1. Yes No N/A Hazardous Waste Determination. CCR 6262.11 requires that a person who generates a waste must determine if that waste is a hazardous waste using specific listed methodologies.

2. No No N/A Generator has EPA I.D. Number. CCR 6262.12(a) requires that a generator shall not treat, store, dispose of, transport or offer for transport a hazardous waste without having received an identification number.

3. No No N/A Authorized waste storage area. HSC 25201(a) requires that no owner or operator of a storage, treatment, transfer, resource recovery or disposal facility shall accept, treat, store or dispose of a hazardous waste at a facility unless the owner or operator holds a hazardous waste facilities permit or other grant of authorization from the State.

4. No No N/A Hazardous waste release prevention. CCR 6265.31 requires that a facility be maintained and operated to minimize the possibility of a fire, explosion, or any unplanned sudden or non-sudden release of a hazardous waste or constituents.

5. No No N/A Establish communication/safety devices for HW. CCR 6265.32 requires all facilities to be equipped with an internal communication or alarm system; a device capable of summoning emergency assistance; fire control equipment and adequate water pressure and volume.

6. Yes No N/A HW containers properly labeled. CCR 6262.34(f)(3) requires generators who accumulate hazardous waste on-site to label each container with the words "Hazardous Waste", composition and physical state of the waste, statement(s) regarding the properties of the waste and the name and address of the person producing the wastes.

7. No No N/A HW accumulation time is not exceeded for containers/tanks. CCR 6262.34 states that a generator may accumulate hazardous waste on-site for a specified period of time. This time being dependent on the maximum volume of waste produced during a month.

8. No Yes N/A Containers are in good condition and aren't leaking. CCR 6265.171 requires that if a container holding hazardous waste is not in good condition, the owner or operator shall transfer the waste to a container that is in good condition or manage the waste in another way to comply with requirements.

9. No No N/A Containers are compatible with the HW. CCR 6265.172 requires the owner or operator to use a container made of, or lined with, materials which will not react with the materials stored in the container.

10. Yes No N/A Containers closed, lids are secured. CCR 6265.173(a) requires that a container holding a hazardous waste be closed during transfer and storage except when it is necessary to add or remove waste.

11. Yes No N/A Conduct weekly inspections of all container storage areas. CCR 6265.174 requires the owner or operator to inspect areas used for container storage or transfer, at least weekly.

12. Yes No N/A Ignitable/reactive waste is not located within 15 meters of property line. CCR 6265.176 requires that containers holding ignitable or reactive waste shall be located at least 15 meters (50 feet) from the facility's property line.

13. Yes No N/A No leaking or Unfit tanks. CCR 6265.191(a) requires that for each existing tank system that does not have secondary containment, as stipulated, the owner or operator shall determine that the tank system is not leaking or is unfit for use.

Recipient Signature: [Signature]
Page 1 of 3
14. ☐ ☐ ☐ Secondary containment provided for aboveground tanks. CCR 66265.193 requires that secondary containment be provided for all new tank systems or components.

15. ☐ ☐ ☐ Daily inspections of aboveground tanks conducted. CCR 66265.195(a) requires the owner or operator of a tank containing hazardous waste to inspect the tank at least once daily.

16. ☑ ☐ ☐ No other wastes/materials are mixed used oil. HSC 25250.7 states that no person who generates, stores or transfers used oil shall intentionally contaminate used oil with other hazardous waste other than minimal amounts of vehicle fuel.

17. ☐ ☐ ☐ Proper management of lead acid batteries including labels. CCR 66265.81 requires proper management of lead acid storage batteries including proper labeling.

18. ☐ ☐ ☐ Proper management of used oil filters. CCR 66266.130 requires that oil filters be managed as a hazardous waste unless specific conditions are met, including: the filters are drained of free-flowing oil, properly disposed of and properly labeled.

19. ☑ ☐ ☐ Transported HW with complete manifest. CCR 66262.20(a) requires a generator, who transports, or offers for transportation, hazardous waste for off-site transfer, treatment, storage or disposal shall prepare manifest according to instructions provided.

20. ☐ ☐ ☐ Sent manifest to DTSC. CCR 66262.23(a)(4) requires the generator to submit a copy of each manifest used to the Department of Toxic Substance Control within 30 days of each shipment of a hazardous waste.

21. ☑ ☐ ☐ Retain manifest for 3 years. CCR 66262.40(a) requires that a generator shall keep a copy of each manifest signed for three years or until the generator receives a signed copy from the designated facility which received the hazardous waste. This signed copy shall be retained as a record for at least three years from the date the waste was accepted by the initial transporter.

22. ☐ ☐ ☑ Retain HW analysis for 3 years. CCR 66262.40(c) requires the generator to keep records of any test results, waste analyses, or other determinations made about the waste for at least three years from the date that the waste was last sent to on-site or off-site TSD facility.

23. ☑ ☐ ☐ Consolidated Manifesting. H&SC 25160.2. Generator shall keep receipts for at least three years and enter into an agreement with transporter that transporter will provide a confirmation to generator that waste is transported to an authorized treatment facility.

24. ☑ ☐ ☐ Retain manifest/bill of lading for spent acid bath for 3 years. CCR 66266.81(4)(B) requires the generator to retain at the generator's place of business for at least three years, a legible copy of each manifest or bill of lading which identifies the spent lead-acid batteries shipped.

25. ☑ ☐ ☐ Retain copies of used oil receipts for 3 years. HSC 25250.8(b)(3) states that the generator shall retain each receipt for used oil for at least three years.

26. ☑ ☐ ☐ Retain bill of lading for used oil filters for 3 years. CCR 66266.130(c)(5) states that a copy of each bill of lading must be kept on the premises of the generator, transporter and receiving facility where the used oil filters are handled. Copies of bills of lading shall be kept for a period of three years.

27. ☐ ☐ ☑ Determine if waste is restricted from land disposal. CCR 66268.7(a) states that if a generator's waste is listed in Article 4 of Chapter 11; the generator shall test the waste to determine if the waste is restricted from land disposal.

28. ☐ ☐ ☑ Notify for Land Disposal Restriction (LDR) Waste. CCR 66268.7(a)(1) states that if a generator determines that a restricted waste is being handled, and the waste does not meet applicable treatment standards, as established, each shipment of waste, the generator shall notify the treatment or storage facility in writing of the appropriate treatment standards.

29. ☐ ☐ ☑ Retain notifications/certifications records/LDR. CCR 66268.7(a)(6) states that if the generator determines that a waste is being managed that is excluded from the definition of waste or hazardous waste or is exempt from the requirements of this division from the point of generation, the generator shall place a one-time notice in the facility's file stating the reason for the exclusion.
Submit notification of intent to export, etc. CCR 66262.52 states that exports of hazardous waste to a foreign country from the State is prohibited unless certain requirements are met, including notification requirements; and the receiving country has agreed to accept the waste.

Retain waste analysis/test records for 3 years. CCR 66262.40(c) states that a generator shall keep the records of any test results, waste analyses, or any other determinations made in accordance with 66262.11 for at least three years from the date that the waste was last sent to on-site or off-site treatment, storage or disposal (TSD) facility.

Retain biennial report/exception report for 3 years. (This applies only to large quantity RCRA generators.) CCR 66262.40(b) states that a generator shall keep a copy of each Biennial Report and Exception Report for a period of at least three years from the date of the report.

Submit written report to DTSC within 15 days of incidents requiring activation of the contingency plan. CCR 66265.56(j) & 66265.77(a) CCR 66265.56(j) requires the owner or operator to note in the operating record the time, date and details of any incident that requires implementing the contingency plan. Within 15 days after the incident, the owner or operator shall submit a written report on the incident to the Department. CCR 66265.77(a) states that in addition to submitting the annual report, the owner or operator shall also report to the Department releases, fires and explosions.

Contingency plan. CCR 66265.51(a) states that each owner or operator shall have a contingency plan for the facility, which is designed to minimize hazards to human health or the environment from fires, explosions or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil or surface water.

Contingency plan complete. CCR 66265.52(a) states that the contingency plan shall describe the action facility personnel shall take to comply with specified requirements in response to fire, explosions or any unplanned sudden or non-sudden release of hazardous waste.

Personnel completed training courses. CCR 66265.16(a)(1) requires that facility personnel successfully complete a program of classroom instruction or on-the-job training that teaches them to perform their duties in a way that ensures the facility's compliance with hazardous waste regulations.

Personnel receive annual training review. CCR 66265.16(c) requires that facility personnel take part in an annual review of the initial training required.

Prepared and retained source reduction documents. HSC 25244.19-21

Universal Waste. CCR 66261.9. Standards for universal waste are being met.

Appliance Recycling HSC 25212 (c) Special handling requirements are being met.

OBSERVATIONS: ALL VIOLATIONS ARE TO BE CORRECTED WITHIN 30 DAYS, UNLESS OTHERWISE MENTIONED

Item 48 Mineral Spirit Container corrected with labeling. Container is in good condition.

Item 55 New 20 gallon drum for waste water. Separate from other entries. Date 5/26/2013

Inspect (60 days)

Recipient Signature

Inspector Signature
HAZARDOUS WASTE GENERATOR INSPECTION
NOTICE TO COMPLY

Based upon the hazardous waste inspection conducted at your facility on: 11/29/03
minor violations were found. Violations described below must be corrected within 30 days of this Notice To
Comply. Within 5 working days of achieving compliance, an appropriate person who is an owner,
operator or employee at the facility shall sign this Notice To Comply and return to the County of Marin,
Certified Unified Program Agency.

LISTED BELOW ARE MINOR VIOLATIONS FOUND DURING THE INSPECTION AND THE MANNER IN
WHICH EACH OF THE MINOR VIOLATIONS MAY BE BROUGHT INTO COMPLIANCE.

- [CR 6426.173] photo processing desk - contain cap not in place; place plastic cap on container
to prevent spilling.

Completed 11/3/03

A reinspection of your facility, to verify compliance with the violations cited on your inspection report, may
be conducted at any time by the County of Marin, Certified Unified Program Agency.

BELOW, PLEASE READ, SIGN AND MAIL TO OUR OFFICE

I certify under penalty of law that:

1. All minor violations been corrected.
2. I am aware that there are significant penalties for submitting false information.
3. I am authorized to sign this Notice To Comply.

Name: Mary Vidal
Title: H&S Coordinator
Signature: Allen
Date Signed: 11-3-03
Facility Name: College of Marin
Address: Kentfield Campus
EPA ID. Numb: CAL 000205 874

Return this document to County Of Marin, Office of Waste Management
Certified Unified Program Agency
P.O. Box 4186
San Rafael, CA 94913-4186
HAZARDOUS WASTE GENERATOR NOTICE TO COMPLY

Facility Name: College of Marin - Kentfield
Facility Address: 885 College Ave
City: Kentfield
Contact Person: Steven Devitt
EPA ID #: CERCLA 781746726

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>SUMMARY OF VIOLATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Hazardous Waste Determination CCR 66262.11 requires that a person who generates a waste must determine if that waste is a hazardous waste using specific listed methodologies.</td>
</tr>
<tr>
<td>2.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Generator has EPA ID Number CCR 66262.12(a) requires that a generator shall not treat, store, dispose of, transport or offer for transport a hazardous waste without having received an identification number.</td>
</tr>
<tr>
<td>3.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>Authorized waste storage area. HSC 25201(a) requires that no owner or operator of a storage, treatment, transfer, resource recovery or disposal facility shall accept, treat, store or dispose of a hazardous waste at a facility unless the owner or operator holds a hazardous waste facilities permit or other grant of authorization from the state.</td>
</tr>
<tr>
<td>4.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>Hazardous waste release prevention CCR 66265.31 requires that a facility be maintained and operated to minimize the possibility of a fire, explosion, or any unplanned sudden or non-sudden release of a hazardous waste or its constituents.</td>
</tr>
<tr>
<td>5.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Establish communication/safety devices for HW CCR 66265.32 requires all facilities to be equipped with an internal communication or alarm system; a device capable of summoning emergency assistance, fire control equipment and adequate water pressure and volume.</td>
</tr>
<tr>
<td>6.</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>HW containers properly labeled CCR 66262.34(f)(3) requires generators who accumulate hazardous waste on site to label each container with the words "Hazardous Waste", composition and physical state of the waste, statement(s) regarding the properties of the waste and the name and address of the person producing the wastes.</td>
</tr>
<tr>
<td>7.</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>HW accumulation time exceeded for containers/tanks. CCR 66262.34 states that a generator may accumulate hazardous waste on site for a specified period of time, this time being dependent on the maximum volume of waste produced during a month.</td>
</tr>
<tr>
<td>8.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Containers are in good condition and aren't leaking. CCR 66265.171 requires that if a container holding hazardous waste is not in good condition, the owner or operator shall transfer the waste to a container that is in good condition or manage the waste in another way to comply with requirements.</td>
</tr>
<tr>
<td>9.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Containers are compatible with the HW. CCR 66265.172 requires the owner or operator to use a container made of or lined with materials which will not react with the materials stored in the container.</td>
</tr>
<tr>
<td>10.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>Containers closed, lids are secured. CCR 66265.173(a) requires that a container holding a hazardous waste be closed during transfer and storage except when it is necessary to add or remove waste.</td>
</tr>
<tr>
<td>11.</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Conduct weekly inspections of all container storage areas. CCR 66265.174 requires the owner or operator to inspect areas used for container storage or transfer, at least weekly.</td>
</tr>
<tr>
<td>12.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Ignitible/ reactive waste located within 15 meters of property line. CCR 66265.176 requires that containers holding ignitible or reactive waste shall be located at least 15 meters (50 feet) from the facility's property line.</td>
</tr>
<tr>
<td>13.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>Leaking or Unfit tanks. CCR 66265.191(a) requires that for each existing tank system that do not have secondary containment, as stipulated, the owner or operator shall determine that the tank system is not leaking or is unfit for use.</td>
</tr>
</tbody>
</table>
Secondary containment provided for aboveground tanks. CCR 66265.193 requires that secondary containment be provided for all new tank systems or components.

Daily inspections of aboveground tanks conducted. CCR 66265.195(a) requires the owner or operator of a tank containing hazardous waste to inspect the tank at least once daily.

Mixing used oil with other HW. HSC 25250.7, states that no person who generates, stores or transfers used oil shall intentionally contaminate used oil with other hazardous waste, other than minimal amounts of vehicle fuel.

Proper management of lead acid batteries including labels. CCR 66265.81 requires proper management of lead acid storage batteries including proper labeling.

Proper management of used oil filters. CCR 66266.130 requires that oil filters be managed as hazardous waste unless specific conditions are met, including: the filters are drained of free-flowing oil, properly disposed of and properly labeled.

Transported HW with complete manifest. CCR 66262.20(a) requires a generator, who transports, or offers for transportation, hazardous waste for off-site transfer, treatment, storage or disposal shall prepare a manifest according to instructions provided.

Sent manifest to DTSC. CCR 66262.23(a)(4) requires the generator to submit a copy of each manifest used to the Department of Toxic Substance Control within 30 days of each shipment of a hazardous waste.

Retain manifest for 3 years. CCR 66262.40(a) requires that a generator shall keep a copy of each manifest signed for three years or until the generator receives a signed copy from the designated facility which received the hazardous waste. This signed copy shall be retained as a record for at least three years from the date the waste was accepted by the initial transporter.

Retain HW analysis for 3 years. CCR 66262.40(c) requires the generator to keep records of any test results, waste analyses, or other determinations made about the waste for at least three years from the date that the waste was last sent to on-site or off-site treatment, storage or disposal.

Retain shipping paper/receipt for milk run for three years. CCR 66263.42(e) requires that the transporter for milk run operations leave a receipt or shipping paper with the generator for the waste collected. Generators shall keep these receipts or shipping papers for three years.

Retain manifest/bill of lading for spent acid batt. for 3 years. CCR 66266.81(4)(B) requires the generator to retain at the generator's place of business for at least three years, a legible copy of each manifest or bill of lading which identifies the spent lead-acid batteries shipped.

Retain copies of used oil receipts for 3 years. HSC 25250.8(b)(3) states that the generator shall retain each receipt for used oil for at least three years.

Retain bill of lading for used oil filters for 3 years. CCR 66266.130(c)(5) states that a copy of each bill of lading must be kept on the premises of the generator, transporter and receiving facility where the used oil filters are handled. Copies of bills of lading shall be kept for a period of three years.

Determine if waste is restricted from land disposal. CCR 66268.7(a) states that if a generator's waste is listed in Article 4 of Chapter 11, the generator shall test the waste to determine if the waste is restricted from land disposal.

Notify for Land Disposal Restriction (LDR) Waste. CCR 66268.7(a)(1) states that if a generator determines that a restricted waste is being handled, and the waste does not meet applicable treatment standards, as established, with each shipment of waste, the generator shall notify the treatment or storage facility in writing of the appropriate treatment standards.

Retain notifications/certifications records/LDR. CCR 66268.7(a)(6) states that if the generator determines that a waste is being managed that is excluded from the definition of waste or hazardous waste or is exempt from the requirements of this division from the point of generation, the generator shall place a one-time notice in the facility's file stating the reason for the exclusion.
30. ☐ ☐ ☐ ☐ Submit notification of intent to export, etc. CCR 66262.52 states that exports of hazardous waste to a foreign country from the State is prohibited unless certain requirements are met, including notification requirements, and the receiving country has agreed to accept the waste.

31. ☐ ☐ ☐ ☐ Retain waste analysis/test records for 3 years. CCR 66262.40(c) states that a generator shall keep the records of any test results, waste analyses, or any other determinations made in accordance with 66262.11 for at least three years from the date that the waste was last sent to on-site or off-site treatment, storage or disposal.

32. ☐ ☐ ☐ ☐ Retain biannual report/exception report for 3 years. (This applies only to large quantity RCRA generators.) CCR 66262.40(b) states that a generator shall keep a copy of each Biennial Report and Exception Report for a period of at least three years from the date of the report.

33. ☐ ☐ ☐ ☐ Submit written report to DTSC within 15 days of incidences requiring activation of the contingency plan. CCR 66265.56(j) & 66265.77(a) CCR 66265.56(j) requires the owner or operator to note in the operating record the time, date and details of any incident that requires implementing the contingency plan. Within 15 days after the incident, the owner or operator shall submit a written report on the incident to the Department. CCR 66265.77(a) states that in addition to submitting the annual report, the owner or operator shall also report to the Department releases, fires and explosions.

34. ☐ ☐ ☐ ☐ Contingency plan. CCR 66265.51(a) states that each owner or operator shall have a contingency plan for the facility, which is designed to minimize hazards to human health or the environment from fires, explosions or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil or surface water.

35. ☐ ☐ ☐ ☐ Contingency plan complete. CCR 66265.52(a) states that the contingency plan shall describe the action facility personnel shall take to comply with specified requirements in response to fire, explosions or any unplanned sudden or non-sudden release of hazardous waste.

36. ☐ ☐ ☐ ☐ Personnel completed training courses. CCR 66265.16(a)(1) requires that facility personnel successfully complete a program of classroom instruction or on-the-job training that teaches them to perform their duties in a way that ensures the facilities compliance with hazardous waste regulations.

37. ☐ ☐ ☐ ☐ Personnel receive annual training review. CCR 66265.16(c) requires that facility personnel take part in an annual review of the initial training required.

38. ☐ ☐ ☐ ☑ Prepared and retained source reduction documents. HSC 25244.19-21

OBSERVATIONS:

Site: Hazardous Waste Storage Area

Visitors were found.

1) Contamination: Yes - Batteries were corrosive, subject to elements. Used batteries were not labeled.

2) The facility contains no label - storage has exceeded

3) Insure that fixed waste is not being discharged to sewer.

4) Annual Hazardous Waste Audit completed.

5) Weekly audits on hazardous waste containment area.

Recipient Signature: __________________________

Inspector Signature: __________________________

Page 3 of 3

(Circle Truth: ☐ Yes ☐ No ☐ Other)