The Board shall act on posted items and shall not deliberate items that are not on the posted agenda.

In compliance with the Americans with Disabilities Act, if you need special assistance to access the meeting room or to otherwise participate at this meeting, including auxiliary aids or services, please contact Human Resources at 485-9340. Notification at least 48 hours prior to the meeting will enable the District to make reasonable arrangements to ensure accessibility to the Board meeting.

If you wish to speak at this meeting, complete a card available at the entrance and give the card to the recording secretary for recognition from the Chair. Public comment presentations will be limited to no more than 3 minutes each.

Government Code §54957.5 states that public records which relate to any item on the open session agenda for a regular Board meeting should be made available for public inspection. Those records that are distributed less than 72 hours prior to the meeting are available for public inspection at the same time they are distributed to all members, or a majority of the members of the Board. The Board has designated the Office of the Superintendent/President at 835 College Avenue, Austin Science Center, Room 146, Kentfield, California, for the purpose of making those public records available for inspection.
AGENDA

A. **Open Session** – 1:00 p.m. Austin Center, Room 101, Kentfield Campus, 835 College Avenue, Kentfield, California
 1. Call to Order, Roll Call and Adoption of Agenda
 2. Public Comment on Agenda
 3. College of Marin Foundation
 4. Advancement Office Update
 5. Measure C Bond Program
 6. Potential Partnership with Fengtai Vocational & Technical Schools (Action)
 7. Adjourn to Closed Session

B. **Closed Session**
 1. CONFERENCE WITH LABOR NEGOTIATOR(S) (Govt. Code Section 54957.6)
 Agency Representative: Kristina Combs
 Employee Organizations: United Professors of Marin (UPM/AFT); California School Employees Associations (CSEA); Service Employees International Union (SEIU); Unrepresented Employees (Confidential, Supervisors, Management)

C. **Open Session**
 1. Call to Order
 2. Report from Closed Session
 3. Adjourn Meeting
Austin Science Center
asset history and options studies

2 December, 2013
Abstract

Austin Science Center, on the Kentfield campus of the College of Marin, has reached an age and condition that require decisions about its future. In March 2011, the Board of Trustees initiated a $6 million, voluntary seismic upgrade project for the building. Following a study session in March 2013, the Board of Trustees requested additional information. In this report we step back and look at several options for the building.

In this white paper the history of the Austin building, decisions and studies of its use and condition, and its status in the Measure C Bond Program are summarized. Options for its future are explored, compared and evaluated. The options studied are variations on four themes: A Retain, B Demolish, C Decommission, and D Repurpose. All options studied met criteria set at the outset of the program: bond language congruence, continuation of the College’s commitments to safety and accessibility, and preservation of a general lecture classroom minimum count of 40. Costs for each option are estimated and summarized. Longer-term considerations, congruence with the 2012 Facilities Master Plan, and other decision variables are summarized. A list of relevant studies and source documents is included.
Austin is typical of mid-century buildings in style, materials, structure, layout and life span.

Objectives and Context

The Austin site and building, after coordinated community and stakeholder engagement, was not initially prioritized as part of the Measure C Bond Program. The site and building have been the subject of a number of studies, none of which has described the building as unsafe for use. However, the building does not meet current ASCE 31 Life Safety Performance Objectives. Several iterations of scope and feasibility for corrective work have been studied. The March 2011 Bond Spending Plan provided for a voluntary seismic upgrade.

At the end of its current use as swing space, Austin must be repaired, abandoned, or removed. This clear set of action choices coincides with another set of decisions – the prioritization of remaining work in the bond program.

The Measure C Bond Program is nearing its conclusion. The last large project in the program is nearing a phase in construction that will allow more predictability of final project costs and, thus, remaining program budget. Decisions and planning for the remaining Measure C resources should soon proceed. It will be cost-effective for the College to make decisions regarding resource allocations to Austin or other program projects in early 2014, so that the bond program staff and operations can be optimized and aligned with the program’s conclusion.

Primarily, this white paper has been compiled to present a range of options, and to inform and support decisions and resource allocations for the future of the Austin site and building.
Executive Summary

Importance The future of the Austin building is a significant variable in the completion of the Measure C Bond Program. Costs, funding constraints, and schedule are among the more quantifiable considerations. Educational adequacy, the College’s commitment to safety and accessibility, total cost of ownership, potential for state funding, and Facilities Master Plan fit are also important decision factors. Stewardship of public funds must consider all of these factors, whether considering new construction or potential modernization of existing facilities.

Decision window The College of Marin Measure C Bond Program is entering its completion phase. Planning and decision-making must be sequenced in coordination with the conclusion of program work, funds and staffing. Rigorous and attentive preparation for the last large project of the program, the Academic Center, has produced favorable results. With robust project and budget management, the Academic Center project performance should be relatively predictable in early 2014. At that time, it will be prudent and cost-effective to reach decisions on the prioritization and use of remaining bond program funds.

Austin history Completed in 1970, Austin exemplifies ‘mid-century’ architecture, engineering, building codes, building systems, energy requirements, thermal behavior and space configuration and efficiency. Since 1970, there have been significant advances in the design and construction of building systems and in educational space planning.

Austin bond program status Early in the Measure C bond program planning and stakeholder engagement and consensus processes, Austin was identified for demolition. Austin is currently providing a cost-effective solution to swing space during the construction of the Academic Center. In preparation for its use as swing space, professional assessments identified seismic, accessibility and other systemic characteristics or deficiencies. Priorities for repairs and improvements were developed, and cost estimates were generated. In the context of constrained bond program resources, a phased plan was drawn up to make progress toward safety and accessibility objectives during and after the building’s use as swing space.

Opportunity convergence As remaining funds become both more predictable and more scarce, there is an opportunity to revisit the last investment decisions of the bond program.

This paper identifies and evaluates options This paper presents a background of the Austin building’s studies and status in the bond program, and identifies and evaluates options for its future. Options explored, with variations, include:

- A Retain with code minimum structural, fire-life safety and ADA work
- B Demolish restore site, or reuse site as parking
- C Decommission preparation of building for unoccupied state
- D Repurpose partial demolition, two level parking

All options studied meet established criteria:

- Bond program appropriateness: congruence with objectives and constraints
- Commitments progress: planning and funding of progress toward accessibility and safety
- Campus capacity: preserve general lecture classroom threshold of 40 or more

Conclusions

- Austin requires action
- Early 2014 is a decision opportunity
- Funding limits feasible options
- Decision variables are both quantitative and qualitative
Austin Science Center was opened in 1970 and is typical of mid-century architectural style, materials, function and life cycle characteristics. The design reflects an era of inexpensive energy, less traditional classroom and office configuration, and – with its expansive circulation spaces - lower emphasis on building utilization ratios. Structurally, buildings of this era pre-date significant advances in seismic and lateral forces requirements. Additionally, buildings of this era pre-date many changes to, developments in or improvements to multiple building systems, including: mechanical, electrical, plumbing and lighting systems, information technology, communication and data systems, energy efficiency practices, materials and life cycle costs, and safety and accessibility requirements.

These and other characteristics of buildings from the middle of the last century are important factors in modernization decisions. One common and widely used asset management metric considers a building’s condition[s] and the cost of repair versus the cost of replacement. The FCI [Facility Condition Index] is formed by the ratio of the cost of repairs to the cost of replacement. At the beginning of the Measure C bond program, an FCI estimate for most buildings was prepared. Austin’s FCI ranked it as the lowest condition rating of the remaining buildings at Kentfield.

Other characteristics of a building are also important considerations. These include any changes in the configuration or functioning of spaces, the educational adequacy of the spaces to deliver modern program, and the optimization of campus space for operational efficiency and for leveraging eligibility for state or other funding.

Austin History
Recent Background

In August 2006, a structural evaluation of the Austin Science Center was performed by Degenkolb Engineers to identify – by today’s standards - seismic deficiencies, or weak links, of the structural and nonstructural systems at the Life-Safety Performance Level as defined in the ASCE 31: Seismic Evaluation of Existing Buildings. Potential seismic deficiencies were identified and included concrete columns and beams with deficient flexural capacity, deficient rebar lap splices in the concrete columns and beams, widely spaced column hoop ties, and widely spaced beam stirrups. The analysis was performed within the ASCE 31 Tier 1/Tier 2 levels.

The assessment also found that certain nonstructural components of the building did not meet ASCE 31 Life Safety Performance Objectives. These components included anchorage and bracing of ceilings and lights, mechanical equipment anchorage, anchorage of tall storage cabinets and containment of potentially hazardous or toxic substances.

In September 2006, Degenkolb conducted a supplemental seismic -Tier 3 level – evaluation of Austin Science Center that included a whole building analysis using advanced computer-modeling techniques. The Tier 3 level evaluation validated the findings of the Tier 1/Tier 2 evaluation. Degenkolb concluded that the building does not meet current Life Safety Performance Objectives and requires seismic retrofit in order to meet those objectives. Specifically, the upper story concrete columns that support roof loads and also comprise the primary lateral force resisting system for the level do not have adequate flexural capacity. The longitudinal rebar lap splices of the columns are not sufficient and the confining reinforcement is widely spaced, preventing ductile behavior of the column and the formation of a plastic hinge in a large seismic event. The column rebar, typical for this vintage building, could lead to the premature failure of the columns in a major seismic event and could result in partial collapse. Indeed, all of these findings are typical of this era of non-modernized buildings.

In March 2011, the Board of Trustees initiated planning for a voluntary seismic upgrade. In early 2012, Noll & Tam Architects and Planners was engaged by the College to develop a prioritized list of improvements that would include seismic strengthening and other items not meeting Life Safety Performance Objectives.
Noll & Tam’s report included the “must do”, the “should do”, and the “can do”. The “must do” list included seismic strengthening, fire alarm replacement, emergency lighting, CBC/ADA accessibility improvements, other code-required elements, and roof repair at an estimated cost of $4 million.

The “should do” list included improved ventilation, lighting, restroom improvements and classroom technology at an additional cost of $4.7 million. The “can do” included replacement of rooftop mechanical equipment, addition of hot water, relocation of electrical switchgear, and landscape improvements at an additional cost of $5.2 million. Little in the way of cosmetic or aesthetic updates was included.

The College then requested the design team assist with a two-stage project for Austin. The first stage would allow the College to use the Austin Science Center as interim swing space during construction of the new Academic Center. The second stage of the project would focus on structural mitigation after the building’s use as swing space, when the Academic Center is completed and occupied.

In July 2013, KPFF Consulting Engineers performed an independent review of the structural assessments conducted by Degenkolb Engineers in 2006. KPFF validated the methodology used by Degenkolb and after examination of the structural drawings in conjunction with the assessment reports, concluded that the reports issued by Degenkolb appropriately analyzed the structural conditions, and that additional lengthy structural analysis would be unlikely to produce a different set of conclusions.

In keeping with the original bond language, the College and Board are committed to making plans and progress toward safety and accessibility. The College has made good faith efforts toward these commitments by commissioning assessments, prioritizing needed improvements, and by preparing cost estimates for those lists. Informed by the building’s conditions, the College must now make repairs and improvements, or develop plans to do so, or remove the building from use.

<table>
<thead>
<tr>
<th>Reconsideration as swing space</th>
<th>Safe harbor and budget constrain options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin will be minimally repaired</td>
<td>Austin options developed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Special board meetings (Oct 18 & Nov 7) held to answer questions on number of classrooms, Austin Science Center, and the track.</td>
<td>BOT item: Bond spending plan includes:</td>
<td>Reconsideration</td>
<td>Program enters completion phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconsideration</td>
<td>Reconsideration</td>
<td>Program enters completion phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin will be minimally repaired</td>
<td>Austin options developed</td>
<td>Program enters completion phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Center construction underway with favorable bid results.</td>
<td>Anticipated completion of program.</td>
<td>Anticipated completion of program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Board of Trustees, in March of 2013, requested additional information and validation of the 2006 Degenkolb report. In addition, staff was asked to consider and test creative solutions for the future of the Austin building and site.

Four options, some with variations, were generated and studied:
- A Retain
- B Demolish
- C Decommission
- D Repurpose

All options met the following prerequisite criteria:
- Reflect the College’s commitment to safety and accessibility, and
- Comply with objectives and legal constraints of the Measure C ballot language.

Each option was compared and evaluated in the following categories:
- Project costs, including construction hard and soft costs, and contingencies,
- Maintenance and operations factors and Total Cost of Ownership (TCO), and
- Extent to which the option advances the objectives of the 2012 Facilities Master Plan.

A RETAIN

Retain building and retrofit with seismic improvements. Retain and minimally repair building, perform minimal structural, highest priority Life Safety Performance Objectives, and ADA improvements. Potential uses include a long-term home for HR, OIM, police, some M&O staff, and additional classrooms. There would be no funding to remodel the space to fit new programmatic needs or address many of the long-term maintenance problems.

Prerequisites: This option satisfies ADA needs by meeting current ADA accessibility requirements of DSA. It resolves seismic concerns through a voluntary seismic upgrade. It is congruent with the Bond language in that the ADA, seismic, and code upgrades improve the accessibility, health, and safety of the facility, however, to meet functional objectives and critical maintenance needs, a significant additional investment would be required in the near future. This scenario results in 53 general-purpose classrooms, exceeding the target 40, a possible concern for future state funding and Total Cost of Ownership.

Evaluation:
It is important to note that after the initial work described in this option is completed, additional critical repairs and improvements will be required in the next three to five years. The systems in most need of immediate repair, which are not covered in this option, are estimated to cost an additional $4.5M. Those systems include roof replacement ($1,250,000), mechanical system and BMS ($1,500,000), lighting replacement and controls ($525,000), and contingency for building code changes ($775,000), which would include items such as fire alarm system updates. Additionally, this scenario does not include the cost of relocating the electrical service, estimated at $500K, from the lower level where it is subject to flooding. As recently as 2001, the basement flooded. Left uncorrected, future flooding of the switchgear has multiple safety risks.

Since the building has been occupied for the last 6 months, the College is accumulating additional data on the building’s functioning and adequacy for classrooms and administrative uses.

The classrooms are functioning adequately as short-term swing classrooms. Factors that make them unsuitable for long-term use include the lack of natural light and non-standard configurations.

The building layout does not function well for administrative functions. The offices were previously occupied by faculty who spent most of their time in classrooms or laboratories. The administrative units currently in the building experience difficulty in working collaboratively due to the offices not being contiguous. Now that the offices are being tested
by “all day” occupants, they have proved very difficult to heat and cool. Many occupants experience no heating at all and have resorted to using portable electric resistance heaters, multiple layers of clothing, and even blankets and gloves while working. ‘Plug-in’ heaters are well known for their low efficacy and high amperage. Consequently, these produce electrical circuit breaker trips, resulting in multiple daily service calls. The lighting control system has failed; exterior lights remain on all the time - the result of a control system far past its anticipated lifespan. The women’s restrooms are significantly undersized, by modern standards, resulting in long lines between classes and the need for custodial visits exceeding 6 times a day.

B DEMOLISH

B1 Demolish, then restore surface parking
B2 Demolish, then replace with two story parking structure
B3 Demolish, then replace with a non-student use building

Under all variations of this scenario, Austin is completely demolished: Remove the building, construct surface parking, or replace with a new two story parking structure no taller than the existing structure or utility building. Trees and landscaping would be preserved as much as possible. Under option B2, 119 new parking spaces would be added to the existing 122 surface spaces. In option B3, the new building space could potentially be used as long-term space for non-student administrative uses. Under current OSA restrictions, new student use buildings are not permitted in a flood plain. Both options B2 and B3 would require a CEQA process with extensive community consensus.

Prerequisites: This option satisfies ADA needs by removing currently existing ADA barriers. It resolves seismic concerns through removal of the building. It is congruent with the bond language in that existing barriers to accessibility, health, and safety of the facility are removed.

C DECOMMISSION

Prepare the building for stable, unoccupied state; defer use decisions. Under this scenario Austin is taken out of service at the end of its use as swing space in mid-2015. Doors would be locked and the building would require security monitoring and fencing to prevent entry into the garage and building. The lower level parking would be out of service as the seismic risk applies to both levels resulting in a loss of 122 spaces. Environmental heating and/or conditioning would be required to the building to reduce the growth of mold.

Prerequisites: This option satisfies ADA needs by decommissioning or not using currently existing ADA barriers. It resolves seismic concerns through non-use. It is congruent with the bond language in that existing barriers to accessibility, health, and safety of the facility are suspended.

D REPURPOSE

D1 Demolish superstructure, seismically retrofit base, configure two story parking
D2 Two story parking, same as 4A, with solar PV panels over the upper level parking

Repurposing (including partial demo for 2 story parking and optional solar). In this option, the upper level of the building (the classroom and office space) is removed leaving an elevated deck. The resulting structure would be seismically upgraded, and other improvements made to make it suitable for a parking structure. In option D2, photovoltaic canopies [similar to those in the Diamond PE complex parking lot] would be installed. The resulting structure would be no higher than the existing structure and trees would remain around the perimeter.

Prerequisites: This option satisfies ADA needs by removing and correcting currently existing ADA barriers. It resolves seismic concerns through a voluntary seismic upgrade. It is congruent with the bond language in that existing barriers to accessibility, health, and safety of the facility are removed or corrected.
Options Analysis and Evaluations

Initial Project Cost and Bond Spending Plan Factors

Project costs for the options range from a low of $56K to a high of $12.7M (escalated project costs, see Table 2).

OPTIONS RANKED BY PROJECT COSTS

<table>
<thead>
<tr>
<th>Rank</th>
<th>Option</th>
<th>Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decommission and stabilize</td>
<td>55,697</td>
</tr>
<tr>
<td>2</td>
<td>Demolish</td>
<td>1,721,045</td>
</tr>
<tr>
<td>3</td>
<td>Seismic bracing only</td>
<td>4,782,166</td>
</tr>
<tr>
<td>4</td>
<td>Demolish, new utility building</td>
<td>5,580,813</td>
</tr>
<tr>
<td>5</td>
<td>Demolish, new parking</td>
<td>7,911,237</td>
</tr>
<tr>
<td>6</td>
<td>Two level parking</td>
<td>8,846,951</td>
</tr>
<tr>
<td>7</td>
<td>Two level parking plus solar</td>
<td>12,745,759</td>
</tr>
</tbody>
</table>

Table 1:

Note 1: After Option A, Seismic only, the building will require significant additional repairs in the near future.

Note 2: Full modernization total project cost is illustrated for calibration.

OPTIONS: PROJECT COSTS BREAKDOWN

<table>
<thead>
<tr>
<th></th>
<th>A Seismic bracing only</th>
<th>B Demolish, new parking structure</th>
<th>C Demolish, new utility building</th>
<th>D Demolishment and stabilize</th>
<th>D1 2 level parking</th>
<th>D2 Solar PV 2 level parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition</td>
<td>0</td>
<td>885,000</td>
<td>885,000</td>
<td>0</td>
<td>600,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Hazardous material abatement</td>
<td>0</td>
<td>250,000</td>
<td>250,000</td>
<td>0</td>
<td>250,000</td>
<td>250,000</td>
</tr>
<tr>
<td>Site work</td>
<td>0</td>
<td>400,000</td>
<td>400,000</td>
<td>0</td>
<td>400,000</td>
<td>400,000</td>
</tr>
<tr>
<td>New construction</td>
<td>3,450,000</td>
<td>0</td>
<td>4,860,000</td>
<td>2,750,000</td>
<td>5,750,000</td>
<td>5,750,000</td>
</tr>
<tr>
<td>Turnkey/PV system</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,500,000</td>
</tr>
<tr>
<td>Subtotal Building and Site</td>
<td>3,450,000</td>
<td>1,545,000</td>
<td>6,455,000</td>
<td>4,295,000</td>
<td>7,000,000</td>
<td>10,500,000</td>
</tr>
</tbody>
</table>

Soft Costs						
CGEA/EIR	0	0	75,000	75,000	75,000	75,000
A/E	321,000	0	100,000	100,000	345,000	345,000
PM/CM	240,000	0	240,000	240,000	240,000	240,000
Testing and materials	282,000	0	282,000	282,000	282,000	282,000
Project contingency	5%	214,850	355,100	249,600	2,900	397,100
Subtotal soft costs	1,087,880	77,250	1,092,100	948,600	2,500	1,338,100

Table 2: Shows the source data for Table 1, above, and provides the next level of detail for estimated near-term costs associated with each option. Soft costs, escalation and contingencies are embedded in each option so that costs shown represent the estimated full impact of each option, and so that options can be compared more directly.
Total Cost of Ownership Factors

For this evaluation category, data was collected from the maintenance and operations department and included maintenance history, utility costs, anticipated PG&E rebates and possible revenue from power generation. The College is in the process of developing hard data on the total cost of ownership. Until that work is complete, the options were ranked relative to each other. To summarize, all the options fell within an acceptable range with the exception of options A and C, which had very poor ratings in this category.

Facilities Plan Considerations

The final evaluation step was to see how each option measured up to the goals and objectives of the 2012 Facilities Master Plan. The summary factors used were: the quality of the space, the capacity and efficiency of the space, and the sustainability [including both green building objectives and energy conservation/generation]. Again, all the options fell within an acceptable range with the exception of options A and C, which had very poor ratings in this category.
Summary

Austin is currently used as swing space during the Academic Center construction. A $6 million voluntary seismic update project was planned and initiated in March 2011. Once Austin is not being used as swing space, there are only three acceptable actions:

- Correct the building deficiencies,
- Demolish the building, or
- Decommission and do not use the building

At the request of the Board of Trustees, staff have provided additional information and stepped back to compile this background document so that the Board may consider options for Austin.

EARLY 2014 IS THE DECISION WINDOW

Remaining program costs are becoming more predictable. As the Measure C Bond Program nears its conclusion, many projects have been recently completed, clarifying final costs. Further, the Academic Center construction is progressing, and will be through the early phases of higher cost variability, excavation, hazardous materials, cultural artifacts discovery and foundations. Remaining program funds will become more predictable over the next quarter.

Program staffing can be optimized. As the projects near conclusion, staffing will be adjusted as the program and team are narrowed.

Program end constrains schedule. Planning, design, and procurement should begin soon so that project completions coincide with or precede program end target dates.

INVESTMENT DECISIONS REFLECT MULTIPLE FACTORS

This is a multivariate decision process in a limited resources context.

Cost considerations include not only initial capital outlay, but also significant additional costs in the next three to five years, and life cycle costs. Mid-century buildings generally require significant remediation to perform well in terms of asset life, energy efficiency, building utilization ratios, safety, accessibility, seismic and lateral load resistance, technology, and multiple other building systems. Costs associated with these system modernizations must be staggered over time, if not funded completely at the outset of remediation.

Adequacy of space and configurations to deliver education programs, support modern teaching and learning, and support faculty and staff must also be considered.
Source Documents List

<table>
<thead>
<tr>
<th>Date</th>
<th>Title and Source</th>
<th>Overview</th>
</tr>
</thead>
</table>
| 2004 | ‘Harry’s List’ | Created by former trustee Harry Moore
Lists known College facility needs
Estimated total needs exceed $350 M |
| 2004 | Bond Measure C, November 2004 | Proposition 39 bond: $249.5 million |
| 2006 | Charettes of Kentfield campus | Broadly collaborative:
Community and College stakeholders |
| 2006 | Measure C Bond Program Update,
PowerPoint presentation by College of Marin
to State Chancellor’s Office, June 2006 | Tier 1 and 2: Austin does not meet
Life Safety Performance Objectives |
| 2006 | Structural Assessment, Austin Science Center,
Degenkolb Engineers, August 2006 | Tier 3: Further analysis; more detail
Affirms: Austin does not meet
Life Safety Performance Objectives |
| 2006 | Supplemental Structural Assessment Report,
Austin Science Center, Degenkolb Engineers
September 2006 | |
| 2006 | PowerPoint presentation
by Steinberg Architects
at Board of Trustees Retreat, April 2006 | Austin slated for demolition |
| 2010 | Assessment Report, Austin Science Center,
CA Architects, December, 2010 | |
| 2012 | Assessment Report, Austin Science Center,
Noll & Tam Architects, May 2012 | Creates prioritized list of improvements
Produces cost estimates for list |
| 2012 | Educational Master Plan Update | Broadly collaborative |
| 2012 | Facilities Master Plan Update
College of Marin, August 2012 | Broadly collaborative
Reflects and supports 2012 Educational Master Plan Update |
| 2013 | Austin Structural Assessment Validation
KPFF Engineers, June 2013 | Confirmation of KPFF assessment methodology
Validation of prior conclusions |
| 2013 | Austin Science Center:
asset history and options studies | Broad team produces white paper
Identifies and evaluates options |
Glossary of Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/E</td>
<td>Architectural & Engineering</td>
</tr>
<tr>
<td>ADA</td>
<td>American Disabilities Act</td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>BMS</td>
<td>Building Management System</td>
</tr>
<tr>
<td>BOT</td>
<td>Board of Trustees</td>
</tr>
<tr>
<td>CBC</td>
<td>California Building Standards</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>District</td>
<td>Marin Community College District</td>
</tr>
<tr>
<td>DSA</td>
<td>Division of the State Architect</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>FCI</td>
<td>Facilities Condition Index</td>
</tr>
<tr>
<td>FMP</td>
<td>Facilities Master Plan</td>
</tr>
<tr>
<td>HR</td>
<td>Human Resources</td>
</tr>
<tr>
<td>IVC</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>KTD</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy & Environmental Design</td>
</tr>
<tr>
<td>LRC</td>
<td>Learning Resource Center</td>
</tr>
<tr>
<td>M&O</td>
<td>Maintenance & Operations</td>
</tr>
<tr>
<td>NAC</td>
<td>New Academic Center</td>
</tr>
<tr>
<td>OIM</td>
<td>Office of Instructional Management</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education</td>
</tr>
<tr>
<td>PG&E</td>
<td>Pacific Gas & Electric</td>
</tr>
<tr>
<td>PM/CM</td>
<td>Program & Construction Management</td>
</tr>
<tr>
<td>PV</td>
<td>Photo Voltaic (Solar Panels)</td>
</tr>
<tr>
<td>SS</td>
<td>Student Services Building</td>
</tr>
<tr>
<td>TB-1</td>
<td>Mobile Unit at Kentfield Campus</td>
</tr>
<tr>
<td>TCO</td>
<td>Total Cost of Ownership</td>
</tr>
</tbody>
</table>
The Kentfield campus of the College of Marin. Austin is in the lower center of the photo.

Contributors

College of Marin

David Wain Coon, Ed.D., Superintendent/President, College of Marin
Greg Nelson, Interim Vice President Finance and Operations, College of Marin
Laura McCarty, Director of Modernization, College of Marin

Consultants

Sarah Lynn Schoening, Program Consultant, Schoening Group Inc
Mark Kelley, Esq. and Jessika Johnson, Esq., Program Counsel, Dannis Woliver Kelley
Ken Brazzel, Program Manager, Jacobs Project Management
To: Board of Trustees
From: Superintendent/President
Subject: Potential Partnership with Fengtai Vocational & Technical Schools

Reason for Board Consideration:

APPROVAL

BACKGROUND:

Superintendent/President David Wain Coon has been invited to an exploratory visit to the Fengtai Vocational and Technical School in Beijing, China. The purpose of this visit is to explore future international exchange and partnership opportunities. While there, Dr. Coon will visit three of Fengtai’s nine campuses and provide presentations to the school’s President, faculty and staff. The trip will also include a visit to Heiner International Education Inc. which specializes in building international exchange programs for higher education worldwide (i.e. UC Berkeley, University of the Pacific and Marquette University.) Nanda Schorske, Executive Dean of Indian Valley Campus and Workforce & Economic Development, and Jason Lau, Director of Community Education, Lifelong Education and International Education will accompany Dr. Coon on his visit to Beijing, China.

Beijing Fengtai Vocational and Technical School is one of the regional government invested public community and career colleges founded by the Beijing Fengtai Human Resources and Social Security Bureau in 1984. The School has nine campuses in Beijing. With a highly-qualified, experienced faculty, and newly upgraded hi-tech facilities and classrooms, the School has become one of the most important community and career college districts in the northeast China region.

Travel is scheduled January, 1-7, 2014. Fengtai Vocational and Technical School will be responsible for providing round-trip air tickets to Beijing, local transportation and hotel accommodations at no cost to the District.

RECOMMENDATION:
The Superintendent/President recommends that the Board of Trustees authorize Dr. Coon, Dr. Lau and Dean Schorske to travel to China as outlined above.

Administrator Initiating Item

David Wain Coon, Ed.D., Superintendent/President