Confidence Intervals & Hypothesis Testing About The Mean μ (mu):
Single Population With σ (sigma) Given

Confidence Intervals

A level C confidence interval for μ is given by:

$$\bar{x} \pm z^* \left(\frac{\sigma}{\sqrt{n}}\right)$$

Where z^* is the upper $(1-C)/2$ critical z-value of the standard normal distribution. Values of z^* for given values of C (expressed as a %) are given in table D.

Using the TI-83/84: $z^* = |\text{invNorm}((1-C)/2)|$

Hypothesis Testing

NULL HYPOTHESIS
$H_0 : \mu = \mu_0$

ALTERNATIVE HYPOTHESIS

- $H_a : \mu > \mu_0$
- $H_a : \mu < \mu_0$
- $H_a : \mu \neq \mu_0$

REJECT H_0 AT LEVEL α IF:

- $z_{obs} \geq z^*_\alpha$
- $z_{obs} \leq -z^*_\alpha$
- $z_{obs} \leq -z^*_\alpha/2$ OR $z_{obs} \geq z^*_\alpha/2$
- $2P[Z \geq |z_{obs}|]$

P-VALUE

Notation and Conditions

1. The Z-statistic has the Standard Normal distribution, provided the sample is taken from a normal population OR approximately normal if $n \geq 30$.
2. z_{obs} is the observed value of the statistic computed from the sample data.
3. z^*_α or $z^*_\alpha/2$ is the critical z-value based on the given α (one-sided alternative) or $\alpha/2$ (two-sided alternative). Using a TI-83/84: $z^*_\alpha = |\text{invNorm}(\alpha)|$.
Confidence Intervals &
Hypothesis Testing About The Mean \(\mu(\text{mu}) \):
Single Population With \(\sigma(\text{sigma}) \) Not Given

Confidence Intervals

A level C confidence interval for \(\mu \) is given by:

\[
\bar{x} \pm t^* \left(\frac{S}{\sqrt{n}} \right)
\]

Where \(t^* \) is the upper \((1-C)/2\) critical t-value of the student t-distribution with \(n-1 \) degrees of freedom. Values of \(t^* \) for given values of \(C \) (expressed as a \%) are given in table D.

Using the TI-84: \(t^* = |\text{invT}((1-C)/2, \text{df})| \).
TI-83 does not have this function, but for values of \(n > 30 \), \(t^* \) and \(z^* \) are approximately equal.

Hypothesis Testing

<table>
<thead>
<tr>
<th>NULL HYPOTHESIS</th>
<th>ALTERNATIVE HYPOTHESIS</th>
<th>REJECT H, AT LEVEL</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0 : \mu = \mu_0)</td>
<td>(H_a : \mu > \mu_0)</td>
<td>(t_{\text{obs}} \geq t^*_{\alpha})</td>
<td>(P[T \geq t_{\text{obs}}])</td>
</tr>
<tr>
<td>(H_0 : \mu < \mu_0)</td>
<td>(H_a : \mu < \mu_0)</td>
<td>(t_{\text{obs}} \leq -t^*_{\alpha})</td>
<td>(P[T \leq -t_{\text{obs}}])</td>
</tr>
<tr>
<td>(H_a : \mu \neq \mu_0)</td>
<td>(H_a : \mu \neq \mu_0)</td>
<td>(t_{\text{obs}} \leq -t^{\alpha/2}) OR (t{\text{obs}} \geq t^_{\alpha/2})</td>
<td>(2P[T \geq</td>
</tr>
</tbody>
</table>

Notation and Conditions

1. The T-statistic has the student t-distribution with \(df = n - 1 \) provided random sample is from a normal population OR \(n \geq 30 \)
2. \(t_{\text{obs}} \) is the observed value of the statistic, which is computed from the sample data.
3. \(t^*_{\alpha} \) or \(t^*_{\alpha/2} \) is the critical t-value based on the given \(\alpha \) (one-sided alternative) or \(\alpha/2 \) (two-sided alternative).
Comparing The Means of Two Populations: Two Independent Samples

Confidence Intervals

A level C confidence interval for $\mu_1 - \mu_2$ is given by:

$$(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Where t^* is the upper (1-C)/2 critical t-value of the student t-distribution with degrees of freedom the smaller of $n_1 - 1$ or $n_2 - 1$. Values of t^* for given values of C (expressed as a %) are given in table D.

Hypothesis Testing

NULL HYPOTHESIS
$H_0 : \mu_1 = \mu_2$

ALTERNATIVE HYPOTHESIS
$H_A : \mu_1 > \mu_2$
$H_A : \mu_1 < \mu_2$
$H_A : \mu_1 \neq \mu_2$

REJECT H. AT LEVEL α IF:
$t_{obs} \geq t^*_\alpha$
$t_{obs} \leq -t^*_\alpha$
$t_{obs} \leq -t^*_{\alpha/2}$ OR
$t_{obs} \geq t^*_{\alpha/2}$

P-VALUE

$P[T \geq t_{obs}]$
$P[T \leq -t_{obs}]$
$2P[T \geq |t_{obs}|]$

Notation and Conditions

1. The T-statistic has the student t-distribution with $df^* = \text{the smaller of } n_1 - 1 \text{ or } n_2 - 1$, provided the samples come from two normal populations (or that eache sample size is greater than 30) normal population OR $n \geq 30$

2. t_{obs} is the observed value of the statistic, which is computed from the sample data.

3. t^*_α or $t^*_{\alpha/2}$ is the critical t-value based on the given α (one-sided alternative) or $\alpha/2$ (two-sided alternative).

(*) When the sample sizes are large, the two sample t-procedures are fairly accurate with $df = \text{the smaller of } n_1 - 1 \text{ or } n_2 - 1$. With small sample sizes it is recommended that t^*_α be computed using the t-distribution with degrees of freedom calculated using the formula:
Confidence Intervals for p - One Sample

Note: p here stands for the true proportion (fraction, also expressed as %) of all members in a population of a particular attribute. p is most commonly known as the *population proportion*.

<table>
<thead>
<tr>
<th>Sample Statistic</th>
<th>Standard Error of the Sample Statistic</th>
<th>Level C Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{p} = \frac{X}{n}$</td>
<td>$\sigma_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$</td>
<td>$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$</td>
</tr>
</tbody>
</table>

Note: $z^* = z_{\alpha/2}$ (where $\alpha = 1 - C$)

Sample Size For a Margin of Error m For Estimating p

The level C confidence interval for the population proportion p will have margin of error at most m, if n is chosen to be:

$$n = \left(\frac{z^*}{2m} \right)^2$$

Hypotheses Testing for p - One Sample

<table>
<thead>
<tr>
<th>NULL HYPOTHESIS</th>
<th>ALTERNATIVE HYPOTHESIS</th>
<th>REJECT H_0 AT LEVEL α IF:</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0: p = p_0$</td>
<td>$H_a: p > p_0$</td>
<td>$z_{obs} > z^*_\alpha$</td>
<td>$P[Z \geq z_{obs}]$</td>
</tr>
<tr>
<td></td>
<td>$H_a: p < p_0$</td>
<td>$z_{obs} < -z^*_\alpha$</td>
<td>$P[Z \leq -z_{obs}]$</td>
</tr>
<tr>
<td></td>
<td>$H_a: p \neq p_0$</td>
<td>$z_{obs} < -z^\alpha/2$ OR $z{obs} > z^_\alpha/2$</td>
<td>$2P[Z \geq</td>
</tr>
</tbody>
</table>
Assumptions:

1. The sample must come from a large population
2. np > 5 and n(1-p) > 5

Notation and Conditions

1. The **Z-statistic** has the Standard Normal distribution
2. z_{obs} is the observed value of the statistic, which is computed from the sample data.
3. z^*_{α} or $z^*_{\alpha/2}$ is the critical z-value based on the given α (one-sided alternative) or $\alpha/2$ (two-sided alternative).